Наибольший общий делитель, взаимно простые числа. Задачи на тему Наибольший общий делитель

09.07.2015 6119 0

Цели: формировать навык нахождения наибольшего общего делителя; ввести понятие взаимно простых чисел; отрабатывать умение решать задачи на использование НОД чисел; учить анализировать, делать выводы.

II. Устный счет

1. Может ли разложение на простые множители числа 24 753 содержать множитель 5? Почему? (Нет, так как запись данного числа не оканчивается цифрой 0 или 5.)

2. Назовите число, которое делится на все числа без остатка. (Нуль.)

3. Сумма двух целых чисел нечетна. Четно или нечетно их произведение? (Если сумма двух чисел нечетна, то одно число четно, второе нечетно. Так как один из множителей четное число, следовательно, он делится на 2, значит и произведение делится на 2. Тогда и все произведение четно.)

4. В одной семье у каждого из трех братьев есть сестра. Сколько детей в семье? (4 детей: трое мальчиков и одна их сестра.)

III . Индивидуальная работа

Разложите число 210 всеми возможными способами:

а) на 2 множителя; (210 = 21 · 10 = 14 · 15 = 7 · 30 = 70 · 3 = 6 · 35 = 42 · 5 = 105 · 2.)

б) на 3 множителя; (210 = 3 · 7 · 10 = 5 · 3 · 14 = 7 · 5 · 6 = 35 · 2 · 3 = 21 · 2 · 5 = 7 · 2 · 15.)

в) на 4 множителя. (210 = 3 · 7 · 2 · 5.)

IV. Сообщение темы урока

«Числа правят миром». Эти слова принадлежат древнегреческому математику Пифагору, жившему в V в. до н.э.

Сегодня мы познакомимся еще с одной группой чисел, которые называются взаимно простыми.

V. Изучение нового материала

1. Подготовительная работа.

№ 146 стр. 25 (на доске и в тетрадях). (Самостоятельно, в это время один ученик работает на обратной стороне доски.)

Найдите все делители каждого числа.

Подчеркните их общие делители.

Запишите наибольший общий делитель.

Ответ:

Какие числа имеют только один общий делитель? (35 и 88.)

2. Работа над новой темой.

(Самостоятельно, в это время один ученик работает на обратной стороне доски.)

Найдите наибольший общий делитель чисел: 7 и 21; 25 и 9; 8 и 12; 5 и 3; 15 и 40; 7 и 8.

Ответ:

НОД (7; 21) = 7; НОД (25; 9) = 1; НОД (8; 12) = 4;

НОД (5; 3)= 1; НОД (15; 40) = 5; НОД (7; 8) = 1.

У каких пар чисел одинаковый общий делитель? (25 и 9; 5 и 3; 7 и 8 - общий делитель 1.)

Такие числа называются взаимно простыми.

Дайте определение взаимно простых чисел.

Приведите примеры взаимно простых чисел. (35 и 88, 3 и 7; 12 и 35; 16 и 9.)

VI. Историческая минутка

Древние греки придумали замечательный способ, позволяющий искать наибольший общий делитель двух натуральных чисел без разложения на множители. Он носил название «Алгоритма Евклида».

О жизни греческого математика Евклида достоверные данные неизвестны. Ему принадлежит выдающееся научное произведение, называемое «Начала». Оно состоит из 13 книг и излагает основы всей древнегреческой математики.

Именно здесь описывается алгоритм Евклида, который заключается в том, что наибольшим общим делителем двух натуральных чисел является последний, отличный он нуля, остаток при последовательном делении этих чисел. Под последовательным делением подразумевается деление большего числа на меньшее, меньшего числа на первый остаток, первого остатка на второй остаток и т.д., пока деление не закончится без остатка. Положим, требуется найти НОД (455; 312), тогда

455: 312 = 1 (ост. 143), получаем 455 = 312 · 1 + 143.

312: 143 = 2 (ост. 26), 312 = 143 · 2 + 26,

143: 26 = 5 (ост. 13), 143 = 26 · 5 + 13,

26: 13 = 2 (ост. 0), 26 = 13 · 2.

Последний делитель или последний, отличный от нуля остаток 13 и будет искомым НОД (455; 312) = 13.

VII. Физкультминутка

VIII. Работа над задачей

1. № 152 стр. 26 (с подробным комментированием у доски и в тетрадях).

Прочитайте задачу.

О ком говорится в задаче?

О чем говорится в задаче?

Назовите 1-й вопрос задачи.

Как узнать, сколько ребят было на елке? (Найти НОД чисел 123 и 82.)

Прочитайте задание к этой задаче из тетрадей. (Количество апельсинов и яблок должно делиться на одно и то же наибольшее число.)

Как узнать, сколько апельсинов было в каждом подарке? (Все количество апельсинов разделить на количество присутствующих на елке детей.)

Как узнать, сколько яблок было в каждом подарке? (Все количество яблок разделить на количество присутствующих на елке детей.)

Запишите решение задачи в тетрадях на печатной основе.

Решение:

НОД (123; 82) = 41, значит, 41 человек.

123: 41 = 3 (ап.)

82: 41 = 2 (ябл.)

(Ответ: ребят 41, апельсинов 3, яблок 2.)

2. № 164 (2) стр. 27 (после краткого разбора, один ученик - на обратной стороне доски, остальные самостоятельно, потом самопроверка).

Прочитайте задачу.

Чему равна градусная мера развернутого угла?

Если один угол в 4 раза меньше, то что можно сказать про второй угол? (Он в 4 раза больше.)

Запишите это в краткую запись.

Каким способом будете решать задачу? (Алгебраическим.)

Решение:

1) Пусть х - градусная мера угла СОК,

4х - градусная мера угла KOD .

Так как сумма углов СОК и KOD равна 180°, то составим уравнение:

х + 4х = 180

5х = 180

х = 180: 5

х = 36; 36° - градусная мера угла СОК.

2) 36 · 4 = 144° - градусная мера угла KOD .

(Ответ: 36°, 144°.)

Постройте эти углы.

Определите вид углов СОК и KOD . (Угол СОК - острый, угол KOD - тупой.)

Почему?

IX. Закрепление изученного материала

1. № 149 стр. 26 (у доски с подробным комментарием).

Что нужно сделать, чтобы определить, являются ли числа взаимно простыми? (Найти их наибольший общий делитель, если он равен 1, то числа взаимно простые.)

2. № 150 стр. 26 (устно).

Подтвердите свой ответ. (9 и 14; 14 и 15; 14 и 27 - пары взаимно простых чисел, так как их НОД равен 1.)

3. № 151 стр. 26 (один ученик у доски, остальные в тетрадях).

(Ответ: .)

Кто не согласен?

4. Устно, с подробным объяснением.

Как находят наибольший общий делитель нескольких натуральных чисел? (Находят так же, как и двух чисел.)

Найдите наибольший общий делитель чисел:

а) 18, 14 и 6; б) 26, 15 и 9; в) 12, 24, 48; г) 30, 50, 70.

Решение:

а) 1. Проверим, делятся ли числа 18 и 14 на 6. Нет.

2. Разложим на простые множители наименьшее число 6 = 2 · 3.

3. Проверим, делятся ли числа 18 и 14 на 3. Нет.

4. Проверим, делятся ли числа 18 и 14 на 2. Да. Следовательно, НОД (18; 14; 6) = 2.

б) НОД (26; 15; 9) = 1.

Что можно сказать об этих числах? (Они взаимно простые.)

в) НОД (12; 24; 48) = 12.

г) НОД (30; 50; 70) = 10.

X. Самостоятельная работа

Взаимопроверка. (На закрывающейся доске записаны ответы.)

Вариант I. № 161 (а, б) стр. 27, № 157 (б - 1 и 3 число) стр. 27.

Вариант II . № 161 (в, г) стр. 27, № 157 (б - 2 и 3 число) стр. 27.

XI. Подведение итогов урока

Какие числа называют взаимно простыми?

Как можно узнать, являются ли данные числа взаимно простыми?

Как найти наибольший общий делитель нескольких натуральных чисел?

Домашнее задание

№ 169 (6), 170 (в, г), 171, 174 стр. 28.

Дополнительное задание: При перестановке цифр простого числа 311 опять получится простое число (проверьте это по таблице простых чисел). Найдите все двузначные числа, обладающие таким же свойством. (113, 131; 13, 31; 17, 71; 37, 73; 79, 97.)

Общие делители

Пример 1

Найти общие делители чисел $15$ и $–25$.

Решение .

Делители числа $15: 1, 3, 5, 15$ и им противоположные.

Делители числа $–25: 1, 5, 25$ и им противоположные.

Ответ : у чисел $15$ и $–25$ общими делителями будут числа $1, 5$ и им противоположные.

Согласно свойствам делимости числа $−1$ и $1$ – делители любого целого числа, значит, $−1$ и $1$ всегда будут общими делителями для любых целых чисел.

Любой набор целых чисел всегда будет иметь как минимум $2$ общих делителя: $1$ и $−1$.

Отметим, что если целое число $a$ – общий делитель некоторых целых чисел, то –а также будет общим делителем для этих чисел.

Чаще всего на практике ограничиваются только положительными делителями, но при этом не стоит забывать, что каждое противоположное положительному делителю целое число также будет делителем данного числа.

Определение наибольшего общего делителя (НОД)

Согласно свойствам делимости у каждого целого числа есть хотя бы один делитель, отличный от нуля, и количество таких делителей конечно. В таком случае общих делителей заданных чисел также конечное число. Из всех общих делителей заданных чисел можно выделить наибольшее число.

В случае равенства всех данных чисел нулю нельзя определить наибольший из общих делителей, т.к. нуль делится на любое целое число, которых бесконечное множество.

Обозначается наибольший общий делитель чисел $a$ и $b$ в математике $НОД(a, b)$.

Пример 2

Найти НОД целых чисел 412$ и $–30$..

Решение .

Найдем делители каждого из чисел:

$12$: числа $1, 3, 4, 6, 12$ и им противоположные.

$–30$: числа $1, 2, 3, 5, 6, 10, 15, 30$ и им противоположные.

Общими делителями чисел $12$ и $–30$ будут $1, 3, 6$ и им противоположные.

$НОД (12, –30)=6$.

Определить НОД трех и более целых чисел можно аналогично определению НОД двух чисел.

НОД трех и более целых чисел является наибольшее целое число, которое делит одновременно все числа.

Обозначают наибольший делитель $n$ чисел $НОД(a_1, a_2, …, a_n)= b$.

Пример 3

Найти НОД трех целых чисел $–12, 32, 56$.

Решение .

Найдем все делители каждого из чисел:

$–12$: числа $1, 2, 3, 4, 6, 12$ и им противоположные;

$32$: числа $1, 2, 4, 8, 16, 32$ и им противоположные;

$56$: числа $1, 2, 4, 7, 8, 14, 28, 56$ и им противоположные.

Общими делителями чисел $–12, 32, 56$ будут $1, 2, 4$ и им противоположные.

Найдем наибольшее из этих чисел, сравнив только положительные из них: $1

$НОД(–12, 32, 56)=4$.

В некоторых случаях НОД целых чисел может быть одно из этих чисел.

Взаимно простые числа

Определение 3

Целые числа $a$ и $b$ – взаимно простые , если $НОД(a, b)=1$.

Пример 4

Показать, что числа $7$ и $13$ – взаимно простые.

Простые и составные числа

Определение 1 . Общим делителем нескольких натуральных чисел называют число, которое является делителем каждого из этих чисел.

Определение 2 . Самый большой из общих делителей называют наибольшим общим делителем (НОД) .

Пример 1 . Общими делителями чисел 30 , 45 и 60 будут числа 3 , 5 , 15 . Наибольшим общим делителем этих чисел будет

НОД (30 , 45 , 10) = 15 .

Определение 3 . Если наибольший общий делитель нескольких чисел равен 1 , то эти числа называют взаимно простыми .

Пример 2 . Числа 40 и 3 будут взаимно простыми числами, а числа 56 и 21 не являются взаимно простыми, поскольку у чисел 56 и 21 есть общий делитель 7 , который больше, чем 1.

Замечание . Если числитель дроби и знаменатель дроби являются взаимно простыми числами, то такая дробь несократима .

Алгоритм нахождения наибольшего общего делителя

Рассмотрим алгоритм нахождения наибольшего общего делителя нескольких чисел на следующем примере.

Пример 3 . Найти наибольший общий делитель чисел 100, 750 и 800 .

Решение . Разложим эти числа на простые множители :

Простой множитель 2 в первое разложение на множители входит в степени 2 , во второе разложение – в степени 1 , в третье разложение – в степени 5 . Обозначим наименьшую из этих степеней буквой a . Очевидно, что a = 1 .

Простой множитель 3 в первое разложение на множители входит в степени 0 (другими словами, множитель 3 в первое разложение на множители вообще не входит), во второе разложение входит в степени 1 , в третье разложение – в степени 0 . Обозначим наименьшую из этих степеней буквой b . Очевидно, что b = 0 .

Простой множитель 5 в первое разложение на множители входит в степени 2 , во второе разложение – в степени 3 , в третье разложение – в степени 2 . Обозначим наименьшую из этих степеней буквой c . Очевидно, что c = 2 .

Запомните!

Если натуральное число делится только на 1 и на само себя, то оно называется простым.

Любое натуральное число всегда делится на 1 и на само себя.

Число 2 — наименьшее простое число. Это единственное чётное простое число, остальные простые числа — нечётные.

Простых чисел много, и первое среди них — число 2 . Однако нет последнего простого числа. В разделе «Для учёбы» вы можете скачать таблицу простых чисел до 997 .

Но многие натуральные числа делятся нацело ещё и на другие натуральные числа.

Например:

  • число 12 делится на 1 , на 2 , на 3 , на 4 , на 6 , на 12 ;
  • число 36 делится на 1 , на 2 , на 3 , на 4 , на 6 , на 12 , на 18 , на 36 .

Числа, на которые число делится нацело (для 12 это 1, 2, 3, 4, 6 и 12 ) называются делителями числа.

Запомните!

Делитель натурального числа a — это такое натуральное число, которое делит данное число «a » без остатка.

Натуральное число, которое имеет более двух делителей называется составным.

Обратите внимание, что числа 12 и 36 имеют общие делители. Это числа: 1, 2, 3, 4, 6, 12 . Наибольший из делителей этих чисел — 12 .

Общий делитель двух данных чисел «a » и «b » — это число, на которое делятся без остатка оба данных числа «a » и «b ».

Запомните!

Наибольший общий делитель (НОД) двух данных чисел «a » и «b » — это наибольшее число, на которое оба числа «a » и «b » делятся без остатка.

Кратко наибольший общий делитель чисел «a » и «b » записывают так :

НОД (a; b) .

Пример: НОД (12; 36) = 12 .

Делители чисел в записи решения обозначают большой буквой «Д».

Д (7) = {1, 7}

Д (9) = {1, 9}

НОД (7; 9) = 1

Числа 7 и 9 имеют только один общий делитель — число 1 . Такие числа называют взаимно простыми числами .

Запомните!

Взаимно простые числа — это натуральные числа, которые имеют только один общий делитель — число 1 . Их НОД равен 1 .

Как найти наибольший общий делитель

Чтобы найти НОД двух или более натуральных чисел нужно:

  1. разложить делители чисел на простые множители;

Вычисления удобно записывать с помощью вертикальной черты. Слева от черты сначала записываем делимое, справа — делитель. Далее в левом столбце записываем значения частных.

Поясним сразу на примере. Разложим на простые множители числа 28 и 64 .


  1. Подчёркиваем одинаковые простые множители в обоих числах.
    28 = 2 · 2 · 7

    64 = 2 · 2 · 2 · 2 · 2 · 2

  2. Находим произведение одинаковых простых множителей и записать ответ;
    НОД (28; 64) = 2 · 2 = 4

    Ответ: НОД (28; 64) = 4

Оформить нахождение НОД можно двумя способами: в столбик (как делали выше) или «в строчку».



Copyright © 2024 Школа и образование.