Обоснование необходимость методов инженерии знаний. Смотреть страницы где упоминается термин инженерия знаний

представляет собой совокупность моделей, методов и технических приемов, нацеленных на создание систем, которые предназначены для решения проблем с использованием знаний. Фактически инженерия знаний – это теория, методология и технология, которые охватывают методы добычи, анализа, представления и обработки знаний экспертов.

Представление знаний, их обработка и использование, рассматриваемые применительно к конкретной прикладной области, являются предметом инженерии знаний.

На высоком уровне, процесс инженерии знаний состоит из двух:

1. – преобразование «сырых знаний» в организованные.

2. – преобразование организованных знаний в реализованные.

С областью инженерии знаний тесно связано понятие .

Сущностью можно считать научный анализ и автоматизацию интеллектуальных функций человека. Однако для большинства проблем общая реальность – трудность их машинного воплощения. Исследования по ИИ позволили утвердиться во мнении, что подлинно необходимым для решения проблем являются знания экспертов, т.е. если создать систему, способную запоминать и использовать знания экспертов, то она найдет применение в практической деятельности.

История возникновения термина

Инженерия знаний тесно связана со всем процессом разработки интеллектуальных информационных систем в целом и (ЭС) в частности – от возникновения замысла до его реализации и совершенствования.

В конце 1960-х и начале 1970-х гг. под руководством Э.Фейгенбаума в Стенфордском университете США была создана система DENDRAL, а позднее – MYCIN. Поскольку эти системы накапливают в памяти компьютера знания экспертов и используют эти знания для решения проблем, извлекая их при необходимости из памяти, то они получили названия экспертных, а профессор Э.Фейгенбаум, являющийся одним из создателей экспертных систем (ЭС), выдвинул для данной области техники название «инженерия знаний». Слово «engineering» в английском языке означает искусную обработку предметов, изобретение или создание чего-либо. Следовательно, работу по оснащению программ специальными экспертными знаниями из проблемной области, выполняемую человеком либо компьютером (программой), также можно назвать «инженерией знаний».

Базы знаний.

Совокупность сведений, понятий, представлений о чем-либо, полученных, приобретенных, накопленных в результате учения, опыта, в процессе жизни и т.д. и обычно реализуемых в деятельности. Более формальные определения применяемые обычно в рамках менеджмента знаний:

Представление знаний, их обработка и использование, рассматриваемое применительно к конкретнойприкладной области, является предметом инженерии знаний. Коллекция совместно организованных знаний, относящихся к задачам, решаемым в системе искусственного интеллекта (ИИ), называется базой знаний (БЗ).

Итак, - это семантическая модель, описывающая предметную область и позволяющая отвечать на такие вопросы из этой предметной области, ответы на которые в явном виде не присутствуют в базе. База знаний является основным компонентом систем Искусственного интеллекта и Экспертных систем. Большинство БЗ ограничены в некоторой специальной, обычно узкой предметной области, в которой они сосредоточены.При создании БЗ технология ИИ позволяет встраивать в компьютер механизм и способности вывода, основывающиеся на фактах и отношениях, содержащихся в БЗ.

Задачи инженерии знаний.

Анализ предметной и проблемной областей.

Предметная область - сфера человеческой деятельности, выделенная и описанная согласно установленным критериям. В описываемое понятие должны входить сведения об ее элементах, явлениях, отношениях и процессах, отражающих различные аспекты этой деятельности. В описании предметной области должны присутствовать характеристики возможных воздействий окружающей среды на элементы и явления предметной области, а также обратные воздействия этих элементов и явлений на среду.

Проблемная область - комплексное понятие, включающее предметную область, решаемые задачи, цели, возможные стратегии и эвристики. Предметную область можно определить как объект или, например, производственную систему со всем комплексом понятий и знаний о ее функционировании. При исследовании проблемной области необходимы знания о задачах, решаемых в производственной системе, и стоящих перед ней целях.

При исследовании экономических систем и решаемых ими задач с целью формализации знаний в БЗ и работе необходимо учитывать специфику таких систем. Экономическим системам присуща динамичность функционирования, частая смена ситуаций, обновление больших массивов измерительных и других данных, характеризующих состояние объекта. Они часто функционируют в условиях полной определенности из-за действия случайных возмущающих факторов.

Приобретение знаний.

Приобретение знаний реализуется с помощью двух функций: получения информации извне и ее систематизации. При этом в зависимости от способности системы обучения к логическим выводам возможны различные формы приобретения знаний, а также различные формы получаемой информации.

Классификация этапов обучения, соответствующих способностям компьютеров к формализации знаний:

А. Получение информации без логических выводов.

1. Ввод программ.

2. Ввод фактических данных.

Б. Получение извне информации, уже представленной в виде знаний.

1. Получение готового набора знаний, представленных во внутреннем формате.

2. Получение знаний, представленных во внутреннем формате, в режиме диалога.

3. Получение знаний, представленных во внешнем формате, и их понимание.

В. Обучение по примерам.

1. Параметрическое обучение.

2. Обучение на основе выводов по аналогии.

3. Обучение на основе выводов по индукции – эвристическое обучение.

Г. Приобретение знаний на метауровне.

В случае прикладных систем инженерии знаний необходимо преобразовать специальные знания из какой-либо области в машинный формат, но для этого нужен посредник, хорошо знающий как проблемную область, так и инженерию знаний. Таких посредников называют инженерами знаний (инженерами по знаниям).

Итак, – это специалист по искусственному интеллекту, проектирующий и создающий Экспертную систему или другую информационную систему.

Выявление источников знаний.

Выявление источников знаний и работа с ними - основная задача инженера знаний.

Инженер знаний выполняет важные функции при разработке БЗ. Он должен хорошо ориентироваться в проблемной области и быть неплохим психологом, чтобы общаться с экспертом в процессе приобретения знаний. Вместе с тем он должен хорошо знать и возможности программного обеспечения компьютеров, чтобы структурировать знания для хранения и работы с ними. Основным источником знаний о проблемной области является человек-эксперт. Эксперт - специалист, который за годы обучения и практической деятельности научился эффективно решать задачи, относящиеся к конкретной предметной области.

Инженер знаний работает с ним в режиме диалога или интервью и формирует необходимый объем знаний и сведений для работы с объектом. Возможно также использование опросников, которые затем соответствующим образом обрабатываются.

Табл.1 Методы извлечения знаний из предметного эксперта.

Метод

Описание

Наблюдение на рабочем месте

Наблюдать за экспертом, решающим реальные задачи на своем рабочем месте.

Обсуждение задач

Выявить виды данных, знаний и процедур, необходимых для решения конкретных задач.

Описание задач

Попросить эксперта описать прототипную задачу для каждой категории возможных ответов.

Анализ задачи

Представить эксперту ряд реалистических задач для решения вслух с целью выявить логические основания конкретных шагов рассуждения.

Доводка системы

Попросить эксперта предоставить вам несколько задач для решения и с использованием правил, выявленных во время интервью.

Оценивание системы

Попросить эксперта проверить работу системы и подвергнуть критике правила и структуру управления прототипной системой.

Проверка системы

Предоставить примеры, решенные экспертом и прототипом системы, другим независимым экспертам для сравнения и оценки.

Для некоторых задач источниками дополнительной информации являются книги, технологические описания, инструкции, документы . Используются также методы так называемого « мозгового штурма».

Знания об объекте можно формировать путем использования статистической обработки информации и информации о результатах имитационных экспериментов.

Другим важным источником знаний является Интернет. Помимо традиционного поиска необходимой информации и знаний в Интернет, в настоящее время в процесс поиска знаний вовлекаются интеллектуальные агенты.

Автоматизация процесса сбора знаний.

Автоматизация извлечения знаний и запись их в БЗ . Неавтоматизированный сбор знаний специалистов трудоемкий процесс. В развитых интеллектуальных системах предусматриваются вспомогательные средства для приобретения знаний.

Автоматическая структуризация неформальных знаний , доступных в Интернет через распределенную гипермедиа систему – Web. Технология гипермедиа через Web обеспечивает идеальный подход для развития систем, основанных на знаниях путем расширения возможностей каналов человеко–машинного взаимодействия. Этот новый подход к интеграции технологии гипермедиа с извлечением знаний имеет дело со знаниями до того, как они будут формализованы. Многие Web – механизмы поиска включают интеллектуальных агентов для идентификации и поставки требуемой информации по индивидуальным потребностям и запросам. Причина экспоненциального роста количества информации, обеспечиваемого через Web-механизмы, вызывает развитие методов структуризации информации в распределенных гипермедиа системах. Такая интеграция между технологией гипермедиа и методами извлечения знаний может обеспечить мощный инструмент для извлечения знаний.

Представление знаний.

Важное место в системах управления знаниями занимает проблема представления знаний, являющаяся ключевой.

Существует также ряд общих для всех СПЗ проблем. К ним можно отнести,

в частности, проблемы:

приобретения новых знаний и их взаимодействие с уже существующими;

организации ассоциативных связей;

выбора диапазона в размере элементов представления, связан­ной с тем, насколько «детально могут быть описаны объекты и события, и какая часть внешнего мира может быть представлена в конкретной системе»;

неоднозначности и выбора семантических примитивов;

модульности и понимания;

явности знаний и доступности;

выбора соотношения декларативной и процедурной составляющих представления, что влияет на экономичность системы, полноту, легкость кодировки и понимания.

Модели представления знаний.

Модели представления знаний можно условно разделить на декларативные и процедурные .

Декларативная модель представления знаний основывается на предположении, что проблема представления некоей предметной области решается независимо от того, как эти знания потом будут использоваться. Поэтому модель как бы состоит из двух частей: статических описательных структур знаний и механизма вывода , оперирующего этими структурами и практически независимого от их содержательного наполнения. При этом оказываются раздельными синтаксические и семантические аспекты знания, что является достоинством указанныхформ представленияиз-завозможности достиженияих определенной

универсальности.

В декларативных моделях не содержатся в явном виде описания выполняемых процедур. Эти модели представляют собой множество утверждений. Предметная область представляется в виде

синтаксического описания ее состояния.

Вывод решений основывается в основном на процедурах поиска в пространстве состояний.

В процедурномпредставлении знания содержатсявпроцедурах небольших программах, которые определяют, как выполнять специфичные действия (как поступать в специфичных ситуациях).

При этом можно не описывать все возможные состояния среды или объекта для реализации вывода. Достаточно хранить некоторые начальные состоянияипроцедуры, генерирующиенеобходимые описания ситуаций и действий. При процедурном представлении знаний семантика непосредственно заложена в описание элементов базы знаний, за счет чего повышается эффективность поиска решений.

Выбор способа представления знаний.

Важным вопросом при создании БЗ является выбор способа представления знаний. Цель представления знаний - организация необходимой информации в такую форму, чтобы программа ИИ имела легкий доступ к ней для принятия решений, планирования, узнавания объектов и ситуаций, анализа сцен, вывода заключений и других когнитивных функций.

Основные типы моделей представления знаний применительно к процессу разработки БЗ:

При использовании логики предикатов первого порядка (дедуктивной логики) БЗ может рассматриваться как совокупность логических формул, которые обеспечивают частичное описание проблемной среды.

позволяют описывать свойства и отношения объектов событий, понятий, ситуаций или действий с помощью направленного графа, состоящего из вершин и помеченных ребер.

Фреймы представляют собой декларативно-процедурные структуры. Во многих фреймовых структурах возможна реализация наследственных отношений, при которых объекты могут наследовать атрибуты более абстрактных объектов. Такая форма организации знаний позволяет экономить объем памяти.

Продукционные модели (основанные на правилах вида Если-То) являются наиболее популярным способом представления знаний. При организации знаний с использованием продукционных моделей в БЗ содержатся правила продукций, а в БД содержится информация, которая отображает текущее состояние решаемой задачи. Инициализацию необходимого правила осуществляет блок управления.

Большие трудности возникают при создании моделей нечетких знаний.

Формализация таких знаний осуществляется на основе теории нечетких множеств. Развиваются также модели на основе искусственных нейронных сетей (ИНС), многоагентных систем, генетических алгоритмов и другие моделипредставления и обработки знаний.

Поиск и хранение знаний.

Пои c к и хранение необходимых знаний c вязаны c понятием корпоративной памяти , которая по аналогии с человеческой памятью позволяет пользоваться предыдущим опытом и избегать повторения ошибок, что является пока достаточно труднореализуемым на практике.

Корпоративная память хранит неоднородную информацию из различных и c точников и делает ее доступной пользователям для решения корпоративных задач.

Становится актуальной разработка модели представления знаний, которая обеспечивала бы автоматизированную обработку информации на c емантическом уровне в системах управления знаниями.

Большую популярность в последнее время приобретают онтологии.

В области инженерии знаний было созданы различные средства и модели, позволяющие эффективно управлять знаниями и их представлением. Рассмотрим некоторые из них на нашей странице, посвященной методам инженерии знаний.

Определения

Инженерия знаний (ИЗ) была определена Фейгенбаумом и МакКордаком в 1983 году как:

«ИЗ - раздел (дисциплина) инженерии, направленный на внедрение знаний в компьютерные системы для решения сложных задач, обычно требующих богатого человеческого опыта.»

В настоящее время это также предполагает создание и обслуживание подобных систем (Кендэл, 2007). Это также тесно соприкасается с разработкой программного обеспечения и используется во многих информационных исследованиях, например таких, как исследования искусственного интеллекта, включая базы данных, сбор данных, экспертные системы, систем поддержки принятия решений и географические информационные системы. ИЗ связана с математической логикой, также используемой в разных научных дисциплинах, например в социологии где «подопытными» являются люди, а цели исследований - понимание, как работает человеческая логика на примере взаимоотношений в обществе.

Примеры

Пример действия системы, базирующейся на ИЗ:

  • Рассмотрение задачи
  • Запрос к базам данных по задаче
  • Внесение и структурирование полученной информации (IPK модель)
  • Создание базы данных по структурированной информации
  • Тестирование полученной информации
  • Внесение корректировок и эволюция системы.

Будучи скорее искусством, нежели чисто инженерной задачей, ИЗ не имеет большого практического применения. Подразделом ИЗ является метаинженерия знаний, пригодная для разработки ИИ.

Принципы

С середины 1980-х в ИЗ появилось несколько принципов, методов и инструментов, которые облегчили процесс получения и работы со знаниями. Вот некоторые ключевые из них:

  • Существуют разного рода типы знаний [какие? ] и для работы с ними должны использоваться конкретные методы и техника. [какие? ]
  • Существуют различные типы экспертов и опыта. [какие? ] Для работы с ними должны использоваться определенные методы и техника. [какие? ]
  • Существуют разные способы предоставления, использования, понимания знаний [какие? ] и работа с ними может помочь переосмыслить и использовать уже имеющиеся знания по-новому.

В инженерии знаний используются методы структурирования знаний для убыстрения процесса получения и работы со знаниями.

Теории

  • Трансляционная (традиционная): предполагает прямой перенос человеческих знаний в машину.
  • Модельная (альтернативный взгляд): предполагает моделирование задачи и её способов решения самой системой ИИ .
  • Гибридные.

Wikimedia Foundation . 2010 .

  • Днестровские плавни
  • Пршо, Дадо

Смотреть что такое "Инженерия знаний" в других словарях:

    Инженерия знаний - научное направление, занимающееся разработкой языков и форм представления знаний, методов их наполнения и использования при решении тех или иных проблем, исследованием процедур проверки корректности знаний. Инженерия знаний разрабатывает такие… … Основы духовной культуры (энциклопедический словарь педагога)

    Фрейм (инженерия знаний) - У этого термина существуют и другие значения, см. Фрейм. Фрейм (англ. frame «каркас» или «рамка») способ представления знаний в искусственном интеллекте, представляющий собой схему действий в реальной ситуации. Первоначально… … Википедия

    Инженерия - Инженерное дело (инженерия) область человеческой интеллектуальной деятельности, дисциплина, профессия, задачей которой является применение достижений науки, техники, использование законов физики и природных ресурсов для решения конкретных… … Википедия

    Инженерия производительности - (англ. Performance Engineering) часть системотехники, включающая в себя набор ролей, знаний, практик, инструментов и результатов и применяющаяся на каждом этапе Цикла разработки программного обеспечения с целью убедиться в том, что создаваемое,… … Википедия

    Инженерия программного обеспечения - Новый Airbus A 380 использует довольно много ПО, чтобы создать современную кабину в самолете. Метод инженерии программного обеспечения позволил создать программное обеспечение самолёта, описываемое миллионами строк … Википедия

    Представление знаний - Представление знаний вопрос, возникающий в когнитологии (науке о мышлении), в информатике и в исследованиях искусственного интеллекта. В когнитологии он связан с тем, как люди хранят и обрабатывают информацию. В информатике с подбором … Википедия

    База знаний - (БЗ; англ. knowledge base, KB) в информатике и исследованиях искусственного интеллекта это особого рода база данных, разработанная для оперирования знаниями (метаданными). База знаний содержит структурированную информацию, покрывающую… … Википедия

    Продукционная модель представления знаний - В данной статье или разделе имеется список источников или внешних ссылок, но источники отдельных утверждений остаются неясными из за отсутствия сносок … Википедия

    Логическая модель представления знаний - Логическая модель представления знаний модель в представлении знаний. Основная идея подхода при построении логических моделей представления знаний вся информация, необходимая для решения прикладных задач, рассматривается как… … Википедия

4.1 Анализ предметной и проблемной областей.
4.2 Приобретение знаний .

4.2.1 .
4.2.2 Автоматизация процесса сбора знаний.

4.3 Представление знаний.

4.3.1 Модели представления знаний.
4.3.2 Выбор способа представления знаний.

4.4 Поиск и хранение знаний.

Основные определения

Инженерия знаний представляет собой совокупность моделей, методов и технических приемов, нацеленных на создание систем, которые предназначены для решения проблем с использованием знаний. Фактически инженерия знаний - это теория, методология и технология, которые охватывают методы добычи, анализа, представления и обработки знаний экспертов.

Представление знаний, их обработка и использование, рассматриваемые применительно к конкретной прикладной области, являются предметом инженерии знаний.

На высоком уровне, процесс инженерии знаний состоит из двух:

  1. Извлечение знаний - преобразование «сырых знаний» в организованные.
  2. Внедрение знаний - преобразование организованных знаний в реализованные.

С областью инженерии знаний тесно связано понятие искусственного интеллекта (ИИ).

Сущностью искусственного интеллекта (ИИ) можно считать научный анализ и автоматизацию интеллектуальных функций человека. Однако для большинства проблем общая реальность - трудность их машинного воплощения. Исследования по ИИ позволили утвердиться во мнении, что подлинно необходимым для решения проблем являются знания экспертов, т.е. если создать систему, способную запоминать и использовать знания экспертов, то она найдет применение в практической деятельности.

История возникновения термина

Инженерия знаний тесно связана со всем процессом разработки интеллектуальных информационных систем в целом и экспертных систем (ЭС) в частности - от возникновения замысла до его реализации и совершенствования.

В конце 1960-х и начале 1970-х гг. под руководством Э.Фейгенбаума в Стенфордском университете США была создана система DENDRAL, а позднее - MYCIN. Поскольку эти системы накапливают в памяти компьютера знания экспертов и используют эти знания для решения проблем, извлекая их при необходимости из памяти, то они получили названия экспертных, а профессор Э.Фейгенбаум, являющийся одним из создателей экспертных систем (ЭС), выдвинул для данной области техники название «инженерия знаний». Слово «engineering» в английском языке означает искусную обработку предметов, изобретение или создание чего-либо. Следовательно, работу по оснащению программ специальными экспертными знаниями из проблемной области, выполняемую человеком либо компьютером (программой), также можно назвать «инженерией знаний».

Базы знаний

Знания — совокупность сведений, понятий, представлений о чем-либо, полученных, приобретенных, накопленных в результате учения, опыта, в процессе жизни и т.д. и обычно реализуемых в деятельности. Более формальные определения применяемые обычно в рамках менеджмента знаний:

  • информация, подвергшаяся преобразованию в части выд еле ния сущностных зависимостей. Знание само задает контекст описания и является целостным описанием ситуации;
  • результаты обобщения информации и установления определенных закономерностей в какой-либо предметной области, которые позволяют ставить и решать задачи в этой области;
  • ресурс, базирующийся на практическом опыте специалистов и на информации, существующей на предприятии.

Представление знаний, их обработка и использование, рассматриваемое применительно к конкретной прикладной области, является предметом инженерии знаний. Коллекция совместно организованных знаний, относящихся к задачам, решаемым в системе искусственного интеллекта (ИИ), называется базой знаний (БЗ).

Итак, База знаний — это семантическая модель, описывающая предметную область и позволяющая отвечать на такие вопросы из этой предметной области, ответы на которые в явном виде не присутствуют в базе. База знаний является основным компонентом систем Искусственного интеллекта и Экспертных систем. Большинство БЗ ограничены в некоторой специальной, обычно узкой предметной области, в которой они сосредоточены. При создании БЗ технология ИИ позволяет встраивать в компьютер механизм и способности вывода, основывающиеся на фактах и отношениях, содержащихся в БЗ.

Задачи инженерии знаний

Анализ предметной и проблемной областей

Предметная область - сфера человеческой деятельности, выделенная и описанная согласно установленным критериям. В описываемое понятие должны входить сведения об ее элементах, явлениях, отношениях и процессах, отражающих различные аспекты этой деятельности. В описании предметной области должны присутствовать характеристики возможных воздействий окружающей среды на элементы и явления предметной области, а также обратные воздействия этих элементов и явлений на среду.

Проблемная область - комплексное понятие, включающее предметную область, решаемые задачи, цели, возможные стратегии и эвристики. Предметную область можно определить как объект или, например, производственную систему со всем комплексом понятий и знаний о ее функционировании. При исследовании проблемной области необходимы знания о задачах, решаемых в производственной системе, и стоящих перед ней целях.

При исследовании экономических систем и решаемых ими задач с целью формализации знаний в БЗ и работе необходимо учитывать специфику таких систем. Экономическим системам присуща динамичность функционирования, частая смена ситуаций, обновление больших массивов измерительных и других данных, характеризующих состояние объекта. Они часто функционируют в условиях полной определенности из-за действия случайных возмущающих факторов.

Приобретение знаний

Приобретение знаний реализуется с помощью двух функций: получения информации извне и ее систематизации. При этом в зависимости от способности системы обучения к логическим выводам возможны различные формы приобретения знаний, а также различные формы получаемой информации.

Классификация этапов обучения, соответствующих способностям компьютеров к формализации знаний:

А. Получение информации без логических выводов.

  1. Ввод программ.
  2. Ввод фактических данных.

Б. Получение извне информации, уже представленной в виде знаний.

  1. Получение готового набора знаний, представленных во внутреннем формате.
  2. Получение знаний, представленных во внутреннем формате, в режиме диалога.
  3. Получение знаний, представленных во внешнем формате, и их понимание.

В. Обучение по примерам.

  1. Параметрическое обучение.
  2. Обучение на основе выводов по аналогии.
  3. Обучение на основе выводов по индукции - эвристическое обучение.

Г. Приобретение знаний на метауровне.

В случае прикладных систем инженерии знаний необходимо преобразовать специальные знания из какой-либо области в машинный формат, но для этого нужен посредник, хорошо знающий как проблемную область, так и инженерию знаний. Таких посредников называют инженерами знаний (инженерами по знаниям).

Итак, инженер по знаниям - это специалист по искусственному интеллекту, проектирующий и создающий Экспертную систему или другую информационную систему.

И работа с ними - основная задача инженера знаний.

Инженер знаний выполняет важные функции при разработке БЗ. Он должен хорошо ориентироваться в проблемной области и быть неплохим психологом, чтобы общаться с экспертом в процессе приобретения знаний. Вместе с тем он должен хорошо знать и возможности программного обеспечения компьютеров, чтобы структурировать знания для хранения и работы с ними. Основным источником знаний о проблемной области является человек-эксперт. Эксперт - специалист, который за годы обучения и практической деятельности научился эффективно решать задачи, относящиеся к конкретной предметной области.

Инженер знаний работает с ним в режиме диалога или интервью и формирует необходимый объем знаний и сведений для работы с объектом. Возможно также использование опросников, которые затем соответствующим образом обрабатываются.

Табл.1 Методы извлечения знаний из предметного эксперта.

Описание

Наблюдение на рабочем месте

Наблюдать за экспертом, решающим реальные задачи на своем рабочем месте.

Обсуждение задач

Выявить виды данных, знаний и процедур, необходимых для решения конкретных задач.

Описание задач

Попросить эксперта описать прототипную задачу для каждой категории возможных ответов.

Анализ задачи

Представить эксперту ряд реалистических задач для решения вслух с целью выявить логические основания конкретных шагов рассуждения.

Доводка системы

Попросить эксперта предоставить вам несколько задач для решения и с использованием правил, выявленных во время интервью.

Оценивание системы

Попросить эксперта проверить работу системы и подвергнуть критике правила и структуру управления прототипной системой.

Проверка системы

Предоставить примеры, решенные экспертом и прототипом системы, другим независимым экспертам для сравнения и оценки.

Для некоторых задач источниками дополнительной информации являются книги, технологические описания, инструкции, документы. Используются также методы так называемого «мозгового штурма».

Знания об объекте можно формировать путем использования статистической обработки информации и информации о результатах имитационных экспериментов.

Другим важным источником знаний является Интернет. Помимо традиционного поиска необходимой информации и знаний в Интернет, в настоящее время в процесс поиска знаний вовлекаются интеллектуальные агенты.

Автоматизация процесса сбора знаний

Автоматизация извлечения знаний и запись их в БЗ. Неавтоматизированный сбор знаний специалистов трудоемкий процесс. В развитых интеллектуальных системах предусматриваются вспомогательные средства для приобретения знаний.

Автоматическая структуризация неформальных знаний, доступных в Интернет через распределенную гипермедиа систему - Web. Технология гипермедиа через Web обеспечивает идеальный подход для развития систем, основанных на знаниях путем расширения возможностей каналов человеко-машинного взаимодействия. Этот новый подход к интеграции технологии гипермедиа с извлечением знаний имеет дело со знаниями до того, как они будут формализованы. Многие Web - механизмы поиска включают интеллектуальных агентов для идентификации и поставки требуемой информации по индивидуальным потребностям и запросам. Причина экспоненциального роста количества информации, обеспечиваемого через Web-механизмы, вызывает развитие методов структуризации информации в распределенных гипермедиа системах. Такая интеграция между технологией гипермедиа и методами извлечения знаний может обеспечить мощный инструмент для извлечения знаний.

Представление знаний

Важное место в системах управления знаниями занимает проблема представления знаний, являющаяся ключевой.

Существует также ряд общих для всех СПЗ проблем. К ним можно отнести,
в частности, проблемы:

  • приобретения новых знаний и их взаимодействие с уже существующими;
  • организации ассоциативных связей;
  • выбора диапазона в размере элементов представления, связан-ной с тем, насколько «детально могут быть описаны объекты и события, и какая часть внешнего мира может быть представлена в конкретной системе»;
  • неоднозначности и выбора семантических примитивов;
  • модульности и понимания;
  • явности знаний и доступности;
  • выбора соотношения декларативной и процедурной составляющих представления, что влияет на экономичность системы, полноту, легкость кодировки и понимания.

Модели представления знаний

Модели представления знаний можно условно разделить на декларативные и процедурные.

Декларативная модель представления знаний основывается на предположении, что проблема представления некоей предметной области решается независимо от того, как эти знания потом будут использоваться. Поэтому модель как бы состоит из двух частей: статических описательных структур знаний и механизма вывода, оперирующего этими структурами и практически независимого от их содержательного наполнения. При этом оказываются раздельными синтаксические и семантические аспекты знания, что является достоинством указанных форм представления из-за возможности достижения их определенной универсальности.

В декларативных моделях не содержатся в явном виде описания выполняемых процедур. Эти модели представляют собой множество утверждений. Предметная область представляется в виде синтаксического описания ее состояния.

Вывод решений основывается в основном на процедурах поиска в пространстве состояний.

В процедурном представлении знания содержатся в процедурах небольших программах, которые определяют, как выполнять специфичные действия (как поступать в специфичных ситуациях).

При этом можно не описывать все возможные состояния среды или объекта для реализации вывода. Достаточно хранить некоторые начальные состояния и процедуры, генерирующие необходимые описания ситуаций и действий. При процедурном представлении знаний семантика непосредственно заложена в описание элементов базы знаний, за счет чего повышается эффективность поиска решений.

Выбор способа представления знаний

Важным вопросом при создании БЗ является выбор способа представления знаний. Цель представления знаний — организация необходимой информации в такую форму, чтобы программа ИИ имела легкий доступ к ней для принятия решений, планирования, узнавания объектов и ситуаций, анализа сцен, вывода заключений и других когнитивных функций.

Основные типы моделей представления знаний применительно к процессу разработки БЗ:

  • При использовании логики предикатов первого порядка (дедуктивной логики) БЗ может рассматриваться как совокупность логических формул, которые обеспечивают частичное описание проблемной среды.
  • Семантические сети позволяют описывать свойства и отношения объектов событий, понятий, ситуаций или действий с помощью направленного графа, состоящего из вершин и помеченных ребер.
  • Фреймы представляют собой декларативно-процедурные структуры. Во многих фреймовых структурах возможна реализация наследственных отношений, при которых объекты могут наследовать атрибуты более абстрактных объектов. Такая форма организации знаний позволяет экономить объем памяти.
  • Продукционные модели (основанные на правилах вида Если-То) являются наиболее популярным способом представления знаний. При организации знаний с использованием продукционных моделей в БЗ содержатся правила продукций, а в БД содержится информация, которая отображает текущее состояние решаемой задачи. Инициализацию необходимого правила осуществляет блок управления.
  • Большие трудности возникают при создании моделей нечетких знаний.

Формализация таких знаний осуществляется на основе теории нечетких множеств. Развиваются также модели на основе искусственных нейронных сетей (ИНС), многоагентных систем, генетических алгоритмов и другие моделипредставления и обработки знаний.

Поиск и хранение знаний

Поиcк и хранение необходимых знаний cвязаны c понятием корпоративной памяти, которая по аналогии с человеческой памятью позволяет пользоваться предыдущим опытом и избегать повторения ошибок, что является пока достаточно труднореализуемым на практике.
Корпоративная память хранит неоднородную информацию из различных иcточников и делает ее доступной пользователям для решения корпоративных задач.

Становится актуальной разработка модели представления знаний, которая обеспечивала бы автоматизированную обработку информации на cемантическом уровне в системах управления знаниями.

Большую популярность в последнее время приобретают онтологии.

Методы инженерии знаний

В области инженерии знаний было созданы различные средства и модели, позволяющие эффективно управлять знаниями и их представлением. Рассмотрим некоторые из них на нашей странице, посвященной методам инженерии знаний.

Ссылки по теме

  1. http://www.ozon.ru/context/detail/id/5402790/ Книга "Управление знаниями корпорации и реинжиниринг бизнеса". Абдикеев Н.М., Киселев А.Д. Основными ресурсами развития компаний во все большей мере становятся люди и знания, которыми они обладают, интеллектуальный капитал и растущая профессиональная компетенция кадров. Сегодня требуются новые методы развития организации, основанные на стыке гуманитарного и инженерного подходов, что позволит получить синергетический эффект от их взаимодействия. Этот подход базируется на современных достижениях информационных технологий, а именно когнитивных технологиях развития организации. Актуально развитие симбиоза концепции управления знаниями, реинжиниринга, бизнес-процессов и когнитивной человеческой составляющей.
  2. http://www.novsu.ru/file/106360 Сайт Новгородского Государственного Университета предоставляет статью на тему инженерии знаний. В статье представлен обзор некоторых теоретических аспектов получения знаний, рассматриваются практические методы получения знаний, а также информация о структурирование знаний.
  3. http://old.ulstu.ru/people/SOSNIN/umk/Knowledge_Engineering/gl_17_2.htm Сайт Ульяновского Государственного Технического Университета. На странице представлены материалы по вопросу извлечения знаний. Приводится классификация некоторых методов извлечения знаний, а также их практическое применение.
  4. http://innovatika.boom.ru/UZ.htm На сайте выложена первая глава книги В. П. Баранчеева «Управление знаниями ». В. П. Баранчеев - доктор экономических наук, профессор Государственного университета управления (Институт инноватики и логистики, кафедра инновационного менеджмента). В книге рассматриваются современные концепции управления знаниями, неформализованное и формализованное знание, а также базы знаний.
  5. http://www.knowbase.ru/ Сайт, посвященный базам данных. На странице вводятся понятия знаний, информации, управление знаниями, познание и т.д. Также описаны некоторые возможности баз знаний, а также рассказывается об их практическом применении и проблемах, связанных с их использованием. Каждому понятию отведена отдельная веб-страница.
  6. http://lingvoworks.org.ua/index.php?option=com_content&view=article&id=
    57:2009-12-09-11-34-05&catid=2:misc&Itemid=3 В статье рассматриваются вопросы построения, структурирования, описания, классификации и использования онтологических баз знаний. Приведен обзор современных исследований, посвященных различным аспектам создания и использования онтологии. Пристальное внимание в работе уделено разграничению формальных и лингвистических онтологий. Также, предложена достаточно подробная методология построения ресурсов онтологического типа.
  7. http://aimatrix.nm.ru/aimatrix/SemanticNetworks.htm Статья, повященная семантическим сетям. Описывается история создания семантических сетей, а также принципы построения и классификация.
  8. http://bibl.tikva.ru/base/B1253/B1253Part12-59.php Статья о когнитивных картах. Приводится несколько примеров использования когнитивных карт.
  9. http://ru.wikipedia.org/wiki/%D0%A1%D0%B5%D0%BC%D0%B0%D0%BD%
    D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_
    %D1%81%D0%B5%D1%82%D1%8C Материал из википедии. Статья о семантических сетях.
  10. http://lsdis.cs.uga.edu/projects/glycomics/report/Report2006.html Сайт научно-исследовательского центра. Можно найти пример визуализации биохимической и биологической онтологии.
  11. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1007 В статье дается обзор исследований в области инженерии знаний, описываются принципы и методы, а также два подхода, сформированные в данной области. Ссылка на статью в формате pdf содержится на веб-странице.
  12. http://www.vk-engineering.com/ Веб-сайт, посвященный инженерии знаний. На сайте можно увидеть новости, результаты научных исследований в виде статей, презентаций, видео.
  13. http://www.commonkads.uva.nl/INFO/course-slides/01-intro.ppt#257,1,Introduction to Knowledge Engineering Презентация. Введение в инженерию знаний. История и терминология.
  14. http://web.cs.wpi.edu/~jburge/thesis/kematrix.html Краткий обзор методов извлечения знаний.
  15. http://cranedge.wordpress.com/2010/11/15/strategic-knowledge-engineering/ Стратегия инженерии знаний. Автор статьи Jesu Valiant.

17.2. Практические методы извлечения знаний

17.3. Структурирование знаний

Центральной проблемой при создании интеллектуальных информационных технологий является адекватное отображение знаний специалиста в памяти компьютера. Это привело к развитию нового направления в информатике – инженерии знаний, где определяется соотношение человеческого знания и его формализованного (информационного) отображения в ЭВМ. Инженерия знаний изучает и разрабатывает вопросы, связанные с получением знаний, их анализом и формализацией для дальнейшей реализации в интеллектуальной системе.

Цель главы – дать обзор основных теоретических аспектов инженерии знаний и познакомить с некоторыми практическими методами работы инженеров по знаниям.

После изучения главы вы должны знать:

Подходы к получению знаний при разработке экспертных систем

Теоретические проблемы, возникающие при извлечении знаний

Особенности психологических и лингвистических факторов, которые необходимо учитывать инженеру по знаниям

Влияние философии познания на работу инженера по знаниям

Методы инженера по знаниям при работе с источником знаний

Методы извлечения знаний

Суть экспертных игр

Методы извлечения знаний из текстов

Структурирование полученных знаний

Формирование понятийной и функциональной структуры предметной области

Каким образом формализуются знания и формируется база знаний

17.1. Теоретические аспекты получения знаний

Стратегии получения знаний

Психологический аспект

Лингвистический аспект

Гносеологический аспект

СТРАТЕГИИ ПОЛУЧЕНИЯ ЗНАНИИ

Существует несколько стратегий получения знаний. Наиболее распространенные:

приобретение;

извлечение;

формирование.

Под приобретением знаний понимается способ автоматизированного построения базы знаний посредством диалога эксперта и специальной программы (при этом структура знаний заранее закладывается в программу). Эта стратегия требует существенной предварительной проработки предметной области. Системы приобретения знаний действительно приобретают готовые фрагменты знаний в соответствии со структурами, заложенными разработчиками систем. Большинство этих инструментальных средств специально ориентировано на конкретные экспертные системы с жестко обозначенной предметной областью и моделью представления знаний, т.е. не являются универсальными. Например, система TEIRESIAS , ставшая прародительницей всех инструментариев для приобретения знаний, предназначена для пополнения базы знаний системы MYCIN или ее дочерних ветвей, построенных на "оболочке" EMYCIN в области медицинской диагностики с использованием продукционной модели представления знаний.

Термин извлечение знаний касается непосредственного живого контакта инженера по знаниям и источника знаний. Авторы склонны использовать этот термин как более емкий и более точно выражающий смысл процедуры переноса компетентности эксперта через инженера по знаниям в базу знаний экспертной системы.

Термин форм up ование знаний традиционно закрепился за чрезвычайно перспективной и активно развивающейся областью инженерии знаний, которая занимается разработкой моделей, методов и алгоритмов анализа данных для получения знаний и обучения. Эта область включает индуктивные модели формирования гипотез на основе обучающих выборок, обучение по аналогии и другие методы.

Таким образом, можно выделить три стратегии проведения стадии получения знаний при разработке экспертных систем (рис. 17.1).

Рис. 17.1. Три стратегии получения знаний

На современном этапе разработки экспертных систем в нашей стране стратегия извлечения знаний, по-видимому, является наиболее актуальной, поскольку промышленных систем приобретения и формирования знаний на отечественном рынке программных средств практически нет.

Извлечение знаний – это процедура взаимодействия эксперта с источником знаний, в результате которой становятся явными процесс рассуждений специалистов при принятии решения и структура их представлений о предметной области.

В настоящее время большинство разработчиков экспертных систем отмечают, что процесс извлечения знаний остается самым "узким" местом при построении промышленных систем.

Процесс извлечения знаний – это длительная и трудоемкая процедура, в которой инженеру по знаниям, вооруженному специальными знаниями по когнитивной психологии , системному анализу, математической логике и пр., необходимо воссоздать модель предметной области, которой пользуются эксперты для принятия решения. Часто начинающие разработчики экспертных систем, желая избежать этой мучительной процедуры, задают вопрос: может ли эксперт сам извлечь из себя знания? По многим причинам это нежелательно.

Во-первых, большая часть знаний эксперта – это результат многочисленных наслоений, ступеней опыта. И часто зная, что из А следует В, эксперт не дает себе отчета, что цепочка его рассуждений была гораздо длиннее, например С D , D А, А В, или А Q , Q R , R B .

Во-вторых, как было известно еще древним (вспомним "Диалоги" Платона), мышление диалогично. И поэтому диалог инженера по знаниям и эксперта – наиболее естественная форма "раскручивания" лабиринтов памяти эксперта, в которых хранятся знания, частью носящие невербальный характер, т.е. выраженные не в форме слов, в форме наглядных образов, например. Именно в процессе объяснения инженеру по знаниям эксперт на эти размытые ассоциативные образы надевает четкие словесные ярлыки, т.е. вербализует знания.

В-третьих, эксперту гораздо труднее создать модель предметной области вследствие той глубины и необозримости информации, которой он обладает. Многочисленные причинно-следственные связи реальной предметной области образуют сложную систему, из которой выделить "скелет", или главную структуру, иногда доступнее аналитику, владеющему к тому же системной методологией: Любая модель – это упрощение, а упрощать легче с меньшим знанием деталей.

Чтобы разобраться в природе извлечения знаний, выделим три основных аспекта этой процедуры (рис. 17.2): психологический, лингвистический, гносеологический, которые подробно описаны в .

Рис. 17.2. Основные аспекты извлечения знаний

ПСИХОЛОГИЧЕСКИЙ АСПЕКТ

Модель общения при извлечении знаний

Из трех выделенных аспектов извлечения знаний психологический является, по-видимому, главным, поскольку он определяет успешность и эффективность взаимодействия инженера по знаниям (аналитика) с основным источником знаний – экспертом-профессионалом. Мы выделяем психологический аспект еще и потому, что извлечение знаний происходит чаще всего в процессе непосредственного общения разработчиков системы.

Стремление и умение общаться могут характеризовать степень профессионализма инженера по знаниям.

Известно, что потери информации при разговорном общении велики (рис. 17.3). В связи с этим рассмотрим проблему увеличения информативности общения аналитика и эксперта за счет использования психологических знаний.

Рис. 17.3. Потери информации при общении

Мы можем предложить такую структурную модель общения при извлечении знаний:

участники общения (партнеры);

средства общения (процедура);

предмет общения (знания).

В соответствии с этой структурой выделим три "слоя" психологических проблем, возникающих при извлечении знаний (рис. 17.4), и последовательно рассмотрим их.

Рис. 17.4. Структура психологического аспекта извлечения знаний

Контактный слой

Практически все психологи отмечают, что на любой коллективный процесс влияет атмосфера, возникающая в группе участников. Существуют эксперименты, результаты которых неоспоримо говорят, что дружеская атмосфера в коллективе больше влияет на результат, чем индивидуальные способности отдельных членов группы. Особенно важно, чтобы в коллективе разработчиков складывались кооперативные, а не конкурентные отношения. Для кооперации характерна атмосфера сотрудничества, взаимопомощи, заинтересованности в успехах друг друга, т.е. уровень нравственного общения, а для отношений конкурентного типа – атмосфера индивидуализма и межличностного соперничества (более низкий уровень общения).

К сожалению, прогнозировать совместимость в общении со 100%-ной гарантией невозможно. Однако можно выделить ряд черт личности, характера и других особенностей участников общения, несомненно, оказывающих влияние на эффективность процедуры. Знание этих психологических закономерностей составляет часть багажа психологической культуры, которым должен обладать инженер по знаниям для успешного проведения стадии извлечения знаний:

доброжелательность и дружелюбие;

чувство юмора;

хорошая память и внимание;

наблюдательность;

воображение и впечатлительность;

большая собранность и настойчивость;

общительность и находчивость;

аналитичность;

располагающая внешность и манера одеваться;

уверенность в себе.

Процедурный слой

Инженер по знаниям, успешно овладевший наукой доверия и взаимопонимания с экспертом (контактный слой), должен еще уметь воспользоваться благоприятным воздействием этой атмосферы. Проблемы процедурного слоя касаются проведения самой процедуры извлечения знаний. Здесь мало проницательности и обаяния, полезного для решения проблемы контакта, тут необходимы профессиональные знания.

Остановимся на общих закономерностях проведения процедуры.

Беседу с экспертом лучше всего проводить в небольшом помещении tête-à-tête. Освещение, тепло, уют влияют непосредственно на настроение. Чай или кофе создадут дружескую атмосферу. Американский психолог И. Атватер считает, что для делового общения наиболее благоприятная дистанция от 1,2 до 3 м. Минимальным "комфортным" расстоянием можно считать 0,7 - 0,8 м.

Реконструкция собственных рассуждений – нелегкий труд, и поэтому длительность одного сеанса обычно не превышает 1,5 - 2 ч. Эти два часа лучше выбрать в первой половине дня (например, с 10 до 12ч). Известно, что взаимная утомляемость партнеров при беседе наступает обычно через 20 - 25 мин, поэтому в сеансе нужны паузы.

Любой инженер по знаниям имеет свою уникальную манеру разговора. Одни говорят быстро, другие медленно; одни громко, другие тихо и т.д. Стиль разговора изменить практически невозможно – он закладывается в человеке в раннем детстве. Однако извлечение знаний – это профессиональный разговор, и на его успешность влияет также длина фраз, которые произносит инженер по знаниям.

Этот факт был установлен американскими учеными – лингвистом Ингве и психологом Миллером. Оказалось, что человек лучше всего воспринимает предложения глубиной (или длиной) 7 плюс-минус 2 слова. Это число (7+2) получило название число Ингве-Миллера. Можно считать его мерой "разговорности" речи.

Необходимость фиксации процедуры извлечения знаний ни у кого не вызывает сомнений. Встает вопрос: в какой форме это делать? Можно предложить три способа протоколирования результатов:

запись на бумагу непосредственно по ходу беседы (недостатки – это часто мешает беседе, кроме того, трудно успеть записать все, даже при наличии навыков стенографии);

магнитофонная запись, помогающая аналитику проанализировать весь ход сеанса и свои ошибки (недостаток – может сковывать эксперта);

запоминание с последующей записью после беседы (недостаток – годится только для аналитиков с блестящей памятью).

Когнитивный слой

Когнитивная психология (англ. cognition – познание) изучает механизмы, при помощи которых человек познает окружающий мир.

Предложим несколько советов инженеру по знаниям с позиций когнитивной психологии:

не навязывать эксперту ту модель представления, которая ему (аналитику) более понятна и естественна;

использовать различные методы работы с экспертом исходя из условия, что метод должен подходить к эксперту, как "ключ к замку";

четко осознавать цель процедуры извлечения или ее главную стратегию, которая может быть определена как выявление основных понятий предметной области и связывающих их отношений;

чаще рисовать схемы, отображающие рассуждения эксперта. Это связано с образной репрезентацией информации в памяти человека.

Материал, изложенный выше, тесно связан с азами психологической культуры, которая включает понимание и знание себя и других людей; адекватную самооценку и оценку других людей; саморегулирование психического состояния. Овладеть этой культурой легче с помощью специалистов – психологов, психотерапевтов, но можно самостоятельно с помощью книг, хотя бы популярных, например . Кроме этого успешному преодолению психологических неудач способствует овладение основами актерского мастерства и участие в специальных занятиях по социально-психологическому видеотренингу.

В заключение приведем ряд традиционных психологических неудач начинающего аналитика:

отсутствие контакта между экспертом и инженером по знаниям (из-за психологических особенностей того или другого; ошибок в процедуре; возникновения эффекта "фасада", т.е. желания эксперта "показать себя");

отсутствие понимания (из-за эффекта "проекции", т.е. переноса взгляда аналитика на взгляды эксперта; или эффекта "порядка", т.е. концентрации внимания в первую очередь на том, что высказывается вначале, и др.);

низкая эффективность бесед (слабая мотивация эксперта, т.е. отсутствие у него интереса; или неудачный темп беседы; или неподходящая форма вопросов; или неудовлетворительные ответы эксперта).

ЛИНГВИСТИЧЕСКИЙ АСПЕКТ

Структура лингвистического аспекта

Поскольку процесс общения инженера по знаниям и эксперта – это языковое общение, рассмотрим лингвистический аспект инженерии знаний. Выделим три слоя важных для инженерии знаний лингвистических проблем (рис. 17.5).

Рис. 17.5. Структура лингвистического аспекта извлечения знаний

Проблема общего кода

Большинство психологов и лингвистов считают, что язык – это основное средство мышления наряду с другими знаковыми системами "внутреннего пользования". Языки, на которых говорят и размышляют аналитик и эксперт, могут существенно отличаться.

Итак, нас интересуют два языка – язык аналитика, состоящий из трех компонентов:

терминов предметной области, которые он почерпнул из специальной литературы в период подготовки;

общенаучной терминологии из его "теоретического багажа";

бытового разговорного языка, которым пользуется аналитик;

и язык эксперта, состоящий:

из специальной терминологии, принятой в предметной области;

общенаучной терминологии; бытового языка;

неологизмов, созданных экспертом за время работы (его профессиональный жаргон).

Если считать, что бытовой и общенаучный языки у двух участников общения примерно совпадают, то некоторый общий язык, или код, который необходимо выработать партнерам для успешного взаимодействия, будет складываться из потоков, представленных на рис. 17.6. В дальнейшем этот общий код преобразуется в некоторую понятийную (семантическую) сеть, которая является прообразом поля знаний предметной области.

Рис. 17.6. Схема получения общего кода

Выработка общего кода начинается с выписывания аналитиком всех терминов, употребляемых экспертом, и уточнения их смысла. Фактически это составление словаря предметной области. Затем следуют группировка терминов и выбор синонимов (слов, означающих одно и то же). Разработка общего кода заканчивается составлением словаря терминов предметной области с предварительной группировкой их по смыслу, т.е. по понятийной близости (это уже первый шаг структурирования знаний).

Рис. 17.7 дает представление о неоднозначности интерпретации терминов двумя специалистами. В семиотике, науке о знаковых системах, проблема интерпретации является одной из центральных. Интерпретация связывает "знак" и "означаемый предмет". Только в интерпретации знак получает смысл. Так, на рис. 17.7 слова "прибор X" для эксперта означают некоторую конкретную схему, которая соответствует схеме оригинала прибора, а в голове начинающего аналитика слова "прибор X" вызывают пустой образ или некоторый "черный ящик" с ручками.

Рис. 17.7. Неоднозначность проблемы интерпретации

Понятийная структура

Большинство специалистов по искусственному интеллекту и когнитивной психологии считают, что основная особенность естественного интеллекта и памяти в частности – это связанность всех понятий в некоторую сеть. Поэтому для разработки базы знаний нужен не словарь, а энциклопедия, в которой все термины объяснены в словарных статьях со ссылками на другие термины.

Таким образом, лингвистическая работа инженера по знаниям на данном слое проблем заключается в построении таких связанных фрагментов с помощью "сшивания" терминов. При тщательной работе аналитика и эксперта в понятийных структурах начинает проглядывать иерархия понятий, что в общем согласуется с результатами когнитивной психологии.

Иерархия понятий – это глобальная схема, которая может быть в основе концептуального анализа структуры знаний любой предметной области.

Следует подчеркнуть, что работа по составлению словаря и понятийной структуры требует лингвистического "чутья", легкости манипулирования терминами и богатого словарного запаса инженера по знаниям, так как зачастую аналитик вынужден самостоятельно разрабатывать словарь признаков. Чем богаче и выразительнее общий код, тем полнее база знаний.

Аналитик вынужден все время помнить о трудности передачи образов и представлений в вербальной форме. Часто инженеру по знаниям приходится подсказывать слова и выражения эксперту.

Словарь пользователя

Лингвистические результаты, соотнесенные со слоями общего кода и понятийной структуры, направлены на создание адекватной базы знаний. Однако не следует забывать, что профессиональный уровень конечного пользователя может не позволить ему применить специальный язык предметной области в полном объеме. Для разработки пользовательского интерфейса необходима дополнительная доработка словаря общего кода с поправкой на доступность и "прозрачность" системы.

В заключение перечислим характерные лингвистические неудачи, подстерегающие начинающего инженера по знаниям:

разговор на разных языках (из-за слабой подготовки инженера по знаниям);

несоотнесение с контекстом и неадекватная интерпретация терминов (из-за отсутствия обратной связи, т.е. слишком независимой работы инженера по знаниям);

отсутствие отличий между общим кодом и языком пользователя (не учтены различия в уровне знаний эксперта и пользователя).

ГНОСЕОЛОГИЧЕСКИЙ АСПЕКТ

Суть гносеологического аспекта

Гносеология – это раздел философии, связанный с теорией познания, или теорией отражения действительности в сознании человека.

Инженерия знаний как наука, если можно так выразиться, дважды гносеологична – действительность (О) сначала отражается в сознании эксперта (M 1), а затем деятельность и опыт эксперта интерпретируются сознанием инженера по знаниям (М 2), что служит уже основой для построения третьей интерпретации (P z) – поля знаний экспертной системы (рис. 17.8). Процесс познания в сущности направлен на создание внутреннего представления окружающего мира в сознании человека.

Рис. 17.8. Гносеологический аспект извлечения знаний

В процессе извлечения знаний аналитика в основном интересует компонент знания, связанный с неканоническими индивидуальными знаниями экспертов, поскольку предметные области именно с таким типом знаний считаются наиболее восприимчивыми к внедрению экспертных систем. Эти области обычно называют эмпирическими, так как в них накоплен большой объем отдельных эмпирических фактов и наблюдений, в то время как их теоретическое обобщение – вопрос будущего.

Познание всегда связано с созданием новых понятий и теории. Интересно, что часто эксперт как бы "на ходу" порождает новые знания, прямо в контексте беседы с аналитиком. Такая генерация знаний может быть полезна и самому эксперту, который до того момента мог не осознавать ряд соотношений и закономерностей предметной области. Аналитику, который является "повитухой" при рождении нового знания, может помочь тут и инструментарий системной методологии, позволяющий использовать известные принципы логики научных исследований, понятийной иерархии науки. Эта методология заставляет его за частным увидеть общее, т.е. строить цепочки:

ФАКТ  ОБОБЩЕННЫЙ ФАКТ  ЭМПИРИЧЕСКИЙ ЗАКОН  ТЕОРЕТИЧЕСКИЙ ЗАКОН

Не всегда инженер по знаниям дойдет до последнего звена этой цепочки, но уже само стремление к движению бывает чрезвычайно плодотворным. Такой подход полностью согласуется со структурой самого знания, которое имеет два уровня:

эмпирический (наблюдения, явления);

теоретический (законы, абстракции, обобщения).

Критерии научного знания

Теория - это не только стройная система обобщения научного знания, это также некоторый способ производства новых знаний. Основными методологическими критериями научности, позволяющими считать научным и само новое знание, и способ его получения, являются :

внутренняя согласованность и непротиворечивость;

системность;

объективность;

историзм.

Внутренняя согласованность. Этот критерий в эмпирических областях на первый взгляд просто не работает: в них факты часто не согласуются друг с другом, определения противоречивы, диффузны и т.д. Аналитику, знающему особенности эмпирического знания, его модальность, противоречивость и неполноту, приходится сглаживать эти "шероховатости" эмпирики.

Модальность знания означает возможность его существования в различных категориях, т.е. в конструкциях существования и долженствования. Таким образом, часть законемерностей возможна, другая обязательна и т.д. Кроме того, приходится различать такие оттенки модальности, как: эксперт знает, что...; эксперт думает, что...; эксперт хочет, чтобы...; эксперт считает, что...

Возможная противоречивость эмпирического знания – естественное следствие из основных законов диалектики, и противоречия эти не всегда должны разрешаться в поле знаний, а напротив, именно противоречия служат чаще всего отправной точкой в рассуждениях экспертов.

Неполнота знания связана с невозможностью полного описания предметной области. Задача аналитика эту неполноту ограничить определенными рамками "полноты", т.е. сузить границы предметной области, либо ввести ряд ограничений и допущений, упрощающих проблему.

Системность. Системно-структурный подход к познанию (восходящий еще к Гегелю) ориентирует аналитика на рассмотрение любой предметной области с позиций закономерностей системного целого и взаимодействия составляющих его частей. Современный структурализм исходит из многоуровневой иерархической организации любого объекта, т.е. все процессы и явления можно рассматривать как множество более мелких подмножеств (признаков, деталей) и, наоборот, любые объекты можно (и нужно) рассматривать как элементы более высоких классов обобщений.

Объективность. Процесс познания глубоко субъективен, т.е. он существенно зависит от особенностей самого познающего субъекта. Субъективность начинается уже с описания фактов и увеличивается по мере углубления идеализации объектов.

Следовательно, более корректно говорить о глубине понимания, чем об объективности знания. Понимание - это сотворчество, процесс истолкования объекта с точки зрения субъекта. Это сложный и неоднозначный процесс, совершающийся в глубинах человеческого сознания и требующий мобилизации всех интеллектуальных и эмоциональных способностей человека. Все свои усилия аналитик должен сосредоточить на понимании проблемы. В психологии подтверждается факт, что люди, быстро и успешно решающие интеллектуальные задачи, большую часть времени тратят на понимание ее, в то время как быстро приступающие к поискам решения, чаще всего не могут его найти.

Историзм. Этот критерий связан с развитием. Познание настоящего – есть познание породившего его прошлого. И хотя большинство экспертных систем дают "горизонтальный" срез знаний – без учета времени (в статике), инженер по знаниям должен всегда рассматривать процессы с учетом временных изменений – как связь с прошлым, так и связь с будущим. Например, структура поля знаний и база знаний должны допускать подстройку и коррекцию как в период разработки, так и во время эксплуатации экспертной системы.

Структура познания

Рассмотрев основные критерии научности познания, попытаемся теперь описать его структуру. Методологическая структура познания может быть представлена как последовательность этапов (рис. 17.9) , которые рассмотрим с позиций инженера по знаниям.

Описание и обобщение фактов. Это как бы "сухой остаток" бесед аналитика с экспертом. Тщательность и полнота ведения протоколов во время процесса извлечения и пунктуальная "домашняя работа" над ними – вот залог продуктивного первого этапа познания.

На практике оказывается трудным придерживаться принципов объективности и системности, описанных выше. Чаще всего на этом этапе факты просто собирают и как бы бросают в "общий мешок"; опытный инженер по знаниям часто сразу пытается найти "полочку" или "ящичек" для каждого факта, тем самым подспудно готовясь к этапу концептуализации.

Рис. 17.9. Структура познания

Установление связей и закономерностей. В голове эксперта связи установлены, хотя часто и неявно; задача инженера – выявить каркас умозаключений эксперта. Реконструируя рассуждения эксперта, инженер по знаниям может опираться на две наиболее популярные теории мышления – логическую и ассоциативную. При этом, если логическая теория благодаря горячим поклонникам в лице математиков широко цитируется и всячески эксплуатируется в работах по искусственному интеллекту, то вторая, ассоциативная, менее известна и популярна, хотя имеет также древние корни. Красота и стройность логической теории не должны заслонять печального факта, что человек редко мыслит в категориях математической логики .

Ассоциативная теория представляет мышление как цепочку идей, связанных общими понятиями. Основными операциями такого мышления являются ассоциации, приобретенные на основе различных связей; припоминание прошлого опыта; пробы и ошибки со случайными успехами; привычные ("автоматические") реакции и пр.

Построение идеализированной модели. Дня построения модели, отражающей представление субъекта о предметной области, необходим специализированный язык, с помощью которого можно описывать и конструировать те идеализированные модели мира, которые возникают в процессе мышления. Язык этот создается постепенно с помощью категориального аппарата, принятого в соответствующей предметной области, а также формально-знаковых средств математики и логики. Для эмпирических предметных областей такой язык пока не разработан, и поле знаний, которое полуформализованным способом опишет аналитик, может быть первым шагом к созданию такого языка.

Объяснение и предсказание моделей. Этот завершающий этап структуры познания является одновременно и частичным критерием истинности полученного знания. Если выявленная система знаний эксперта полна и объективна, то на ее основании можно делать прогнозы и объяснять любые явления из данной предметной области. Обычно базы знаний экспертных систем страдают фрагментарностью и модульностью (несвязанностью) компонентов. Все это не позволяет создавать действительно интеллектуальные системы, которые, равняясь на человека, могли бы предсказывать новые закономерности и объяснять случаи, не указанные в явном виде в базе. Исключением тут являются системы формирования знаний, которые ориентированы на генерадию новых знаний и "предсказание".

В заключение перечислим наиболее часто встречающиеся неудачи, связанные с гносеологическими проблемами инженерии знаний (частично из ):

обрывочность, фрагментарность знаний (из-за нарушений принципа системности или ошибок в выборе фокуса внимания);

противоречивость знаний (из-за естественной противоречивости природы и общества, неполноты извлеченных знаний, некомпетентности эксперта);

ошибочная классификация (из-за неправильного определения числа классов или неточного описания класса);

ошибочный уровень обобщения (из-за чрезмерной детализации или обобщенности классов объектов).

Инженерная дисциплина, которая занимается интеграцией знаний с компьютерными системами для того чтобы решить сложные проблемы, обычно требующие высокого уровня человеческой экспертизы:

  • управление конфигурацией знаний (учёт);
  • управление изменениями (эволюция);
  • логистика (поиск и доставка по потребности).

На высоком уровне, процесс инженерии знаний состоит из двух:

  1. Извлечение знаний - преобразование «сырых знаний» в организованные, процесс получения знаний из его источников, которыми могут быть материальные носители (файлы, документы, книги) и эксперты (группы экспертов). Является частью Инженерии знаний.
  2. Внедрение знаний - преобразование организованных знаний в реализованные, процесс преобразования организованных знаний в реализованные.

Технологии управления знаниями

Выделяют следующие технологии управления знаниями:

  • работающие с неявными знаниями (tacit knowledge) в головах экспертов (чаще всего именно они имеются ввиду, когда говорится об "управлении знаниями"). Когнитолог (роль):
    • помогает эксперту выявить и структурировать знания, необходимые для работы экспертной системы , извлекает из эксперта неформализованные знания;
    • осуществляет выбор той интеллектуальной системы , которая наиболее подходит для данной проблемной области, и определяет способ представления знаний в этой ИС;
    • выделяет и программирует стандартные функции, которые будут использоваться в правилах, вводимых экспертом.
  • работающие с письменным знанием ("управление знаниями" распространяется на компьютеры: управление корпоративными знаниями, Knowledge Management) - акцент на "полнотекстовый поиск", "семантический поиск", "автоматическое аннотирование".
    1. НЛП, как даталогическая дисциплина ("работа по форме"), техника взмаха, модальности восприятия, субмодальности, пространственное маркирование, калибровка
    2. использование web 2.0 (блоги и вики)
  • работающие с письменным формальным знанием (инженерия знаний, которую тоже включают в управление знаниями, но уже не так уверенно) - акцент на структурных БД, инженерных моделях, интеграции данных. Большинство технологий в инженерии знаний пошло по пути реализации так называемой "семантической сети", подход Гуссерля-Витгенштейна-Бунге о том, что знание представимо фактами (а факты - это отношения концептов). Из множества фактов возникает семантическая сеть (см. обзор John F.Sowa), в котором отношения-ребра связывают концепты-вершины. Реализацией идеи хранения и использования знаний в форме семантической занялось множество почти непересекающихся тусовок/школ (community of practice), отчего появилось огромное количество реализаций и стандартов, в которых ни одного слова не совпадает, но которые идейно и технологически совместимы.
    1. Моделирование данных + интеграция данных . Используют, когда нужно объединить данные множества САПР различных поставщиков при постройке крупного промышленного объекта. Ключевые слова : ISO 15926 , Gellish , ISO 10303 . Вместо слова "онтология " говорят "модель данных". : практически нет, все запросы к данным. Со знаниями сражается каждый сам врукопашную. Никакой графики, сплошной XML, проприетарные форматы хранения Схемы данных в каждом отдельном САПР. В последнее время появляются и иные решения, нацеленные на интеграцию разнородных данных, например от CYC и (на базе стандартизированной онтологии UMBEL, выражения в RDF и обеспечения доступа к данным через HTTP, см.). Проекты ISO 15926-7 сводятся к тому же: некая онтология + semantic web стандарты.
    2. Concept Map () Используют для (часто коллаборативной через веб) учебной и творческой работы. Ключевые форматы (все на XML) : XCT 3.0, но готовы кушать и Topic Map, и многое другое для редактирования и отображения. Средства оперирования знаниями : графическое отображение, объединение сетей, которые нарисовали два участника творческого процесса. Близкий родственник - MindMap , где вообще не граф, а красиво нарисованное дерево, а связи неименованы.
    3. Conceptual Graphs Используют для академических занятий искусственным интеллектом, экспертные системы, агентские системы и прочая классика жанра. Опираются на работы философа и логика Pierce ("интеллектуальное индексирование"), ключевой человек - John F.Sowa. Ключевой формат хранения знаний : три синтаксиса, главный из которых - CGIF (XML). Средства оперирования знаниями : Common Logic (или ISO ISO/IEC IS 24707:2007, ).
    4. Topic Map Использут для Knowledge Management инициатив - а пришли они из каталожников (библиографов). Большие любители стандартизации (см.), но потеряли фокус (их неумолимо влечет к моделированию данных общего вида, в котором они проигрывают подходам Semantic Web). Ключевые форматы хранения знаний : ISO 13250, XTM 2.0, HyTM. Средства оперирования знаниями : используется topic map engine (десяток вариантов), ибо стандартизован TMAPI 2.0. Кроме того, на финишную прямую вышел специальный стандарт на задание констрейнтов для topic maps - ISO/IEC FCD 19756 (TMCL), а язык запросов Topic Map Query Language (проект ISO 18048), похоже, заглох.


Copyright © 2024 Школа и образование.