Алканы виды связи. Алканы – определение, строение, физические и химические свойства

Предельные углеводороды - это такие соединения, которые представляют собой молекулы, состоящие из атомов углерода, находящихся в состоянии гибридизации sp 3 . Они связаны между собой исключительно ковалентными сигма-связями. Название «предельные» или «насыщенные» углеводороды исходит из того факта, что эти соединения не имеют возможности присоединять какие-либо атомы. Они предельны, полностью насыщены. Исключение составляют циклоалканы.

Что такое алканы?

Алканы - это углеводороды предельные, а их углеродная цепь незамкнута и состоит из атомов углерода, связанных между собой при помощи одинарных связей. Она не содержит иных (то есть двойных, как у алкенов, или же тройных, как у алкилов) связей. Алканы также называют парафинами. Это название они получили, так как общеизвестные парафины являются смесью преимущественно данных предельных углеводородов С 18 -С 35 с особой инертностью.

Общие сведения об алканах и их радикалах

Их формула: С n Р 2 n +2 , здесь n больше или равно 1. Молярная масса вычисляется по формуле: М = 14n + 2. Характерная особенность: окончания в их названиях - «-ан». Остатки их молекул, которые образуются в результате замещения водородных атомов на иные атомы, имеют название алифатических радикалов, или алкилов. Их обозначают буквой R. Общая формула одновалентных алифатических радикалов: С n Р 2 n +1 , здесь n больше или равно 1. Молярная масса алифатических радикалов вычисляется по формуле: М = 14n + 1. Характерная особенность алифатических радикалов: окончания в названиях «-ил». Молекулы алканов имеют свои особенности строения:

  • связь С-С характеризуется длиной 0,154 нм;
  • связь С-Н характеризуется длиной 0,109 нм;
  • валентный угол (угол между связями углерод-углерод) равен 109 градусов и 28 минут.

Начинают гомологический ряд алканы: метан, этан, пропан, бутан и так далее.

Физические свойства алканов

Алканы - это вещества, которые не имеют цвета и нерастворимы в воде. Температура, при которой алканы начинают плавиться, и температура, при которой они закипают, повышаются в соответствии с увеличением молекулярной массы и длины углеводородной цепи. От менее разветвленных к более разветвленным алканам температуры кипения и плавления понижаются. Газообразные алканы способны гореть бледно-голубым либо бесцветным пламенем, при этом выделяется довольно много тепла. СН 4 -С 4 Н 10 представляют собой газы, у которых отсутствует также и запах. С 5 Н 12 -С 15 Н 32 - это жидкости, которые обладают специфическим запахом. С 15 Н 32 и так далее - это твердые вещества, которые также не имеют запаха.

Химические свойства алканов

Данные соединения являются малоактивными в химическом плане, что можно объяснить прочностью трудноразрываемых сигма-связей - С-С и С-Н. Также стоит учитывать, что связи С-С неполярны, а С-Н малополярны. Это малополяризуемые виды связей, относящиеся к сигма-виду и, соответственно, разрываться по наибольшей вероятности они станут по механизму гомолитическому, в результате чего будут образовываться радикалы. Таким образом, химические свойства алканов в основном ограничиваются реакциями радикального замещения.

Реакции нитрования

Алканы взаимодействуют только с азотной кислотой с концентрацией 10% либо с оксидом четырехвалентного азота в газовой среде при температуре 140°С. Реакция нитрования алканов носит название реакции Коновалова. В результате образуются нитросоединения и вода: CH 4 + азотная кислота (разбавленная) = CH 3 - NO 2 (нитрометан) + вода.

Реакции горения

Предельные углеводороды очень часто применяются как топливо, что обосновано их способностью к горению: С n Р 2n+2 + ((3n+1)/2) O 2 = (n+1) H 2 O + n СО 2 .

Реакции окисления

В химические свойства алканов также входит их способность к окислению. В зависимости от того, какие условия сопровождают реакцию и как их изменяют, можно из одного и того же вещества получить различные конечные продукты. Мягкое окисление метана кислородом при наличии катализатора, ускоряющего реакцию, и температуры около 200 °С может дать в результате следующие вещества:

1) 2СН 4 (окисление кислородом) = 2СН 3 ОН (спирт - метанол).

2) СН 4 (окисление кислородом) = СН 2 О (альдегид - метаналь или формальдегид) + Н 2 О.

3) 2СН 4 (окисление кислородом) = 2НСООН (карбоновая кислота - метановая или муравьиная) + 2Н 2 О.

Также окисление алканов может производиться в газообразной или жидкой среде воздухом. Такие реакции приводят к образованию высших жирных спиртов и соответствующих кислот.

Отношение к нагреванию

При температурах, не превышающих +150-250°С, обязательно в присутствии катализатора, происходит структурная перестройка органических веществ, которая заключается в изменении порядка соединения атомов. Данный процесс называется изомеризацией, а вещества, полученные в результате реакции - изомерами. Таким образом, из нормального бутана получается его изомер - изобутан. При температурах 300-600°С и наличии катализатора происходит разрыв связей С-Н с образованием молекул водорода (реакции дегидрирования), молекул водорода с замыканием углеродной цепи в цикл (реакции циклизации или ароматизации алканов):

1) 2СН 4 = С 2 Н 4 (этен) + 2Н 2.

2) 2СН 4 = С 2 Н 2 (этин) + 3Н 2.

3) С 7 Н 16 (нормальный гептан) = С 6 Н 5 - СН 3 (толуол) + 4Н 2 .

Реакции галогенирования

Такие реакции заключаются во введении в молекулу органического вещества галогенов (их атомов), в результате чего образуется связь С-галоген. При взаимодействии алканов с галогенами образуются галогенпроизводные. Данная реакция обладает специфическими особенностями. Она протекает по механизму радикальному, и чтобы ее проинициировать, необходимо на смесь галогенов и алканов воздействовать ультрафиолетовым излучением или же просто нагреть ее. Свойства алканов позволяют реакции галогенирования протекать, пока не будет достигнуто полное замещение на атомы галогена. То есть хлорирование метана не закончится одной стадией и получением метилхлорида. Реакция пойдет далее, будут образовываться все возможные продукты замещения, начиная с хлорметана и заканчивая тетрахлорметаном. Воздействие хлора при данных условиях на другие алканы приведет к образованию различных продуктов, полученных в результате замещения водорода у различных атомов углерода. От температуры, при которой идет реакция, будет зависеть соотношение конечных продуктов и скорость их образования. Чем длиннее углеводородная цепь алкана, тем легче будет идти данная реакция. При галогенировании сначала будет замещаться атом углерода наименее гидрированый (третичный). Первичный вступит в реакцию после всех остальных. Реакция галогенирования будет происходить поэтапно. На первом этапе заместиться только один атом водорода. C растворами галогенов (хлорной и бромной водой) алканы не взаимодействуют.

Реакции сульфохлорирования

Химические свойства алканов также дополняются реакцией сульфохлорирования (она носит название реакции Рида). При воздействии ультрафиолетового излучения алканы способны реагировать со смесью хлора и диоксида серы. В результате образуется хлороводород, а также алкильный радикал, который присоединяет к себе диоксид серы. В результате получается сложное соединение, которое становится стабильным благодаря захвату атома хлора и разрушения очередной его молекулы: R-H + SO 2 + Cl 2 + ультрафиолетовое излучение = R-SO 2 Cl + HCl. Образовавшиеся в результате реакции сульфонилхлориды находят широкое применение в производстве поверхностно-активных веществ.

Химические свойства насыщенных углеводородов обусловлены наличием в их молекулах атомов углерода, водорода и связей $C-H$ и $C-C$.

В молекуле простейшего алкана метана химические связи образуют 8 валентных электронов (4 электрона атома углерода и 4 - атомов водорода), которые размещены на четырех связующих молекулярных орбиталях.

Итак, в молекуле метана из четырех $sp3$-гибридизированных орбиталей атома углерода и s-орбиталей четырех атомов водорода образуются четыре $sp3-s (C-H)$ ковалентные связи (рис 1.).

Молекула этана образуется из двух углеродных тетраэдров - одной $sp3-sp3 (C-C)$ ковалентной связи и шести $sp3-s (C-H)$ ковалентных связей (рис. 2).

Рисунок 2. Строение молекулы этана: а - размещение $\sigma $-связей в молекуле; б - тетраэдрическое модель молекулы; в - шаростержневая модель молекулы; г- масштабная модель молекулы по Стюарту - Бриглебу

Особенности химических связей в алканах

В рассмотренных типах ковалентных связей области наибольшей электронной плотности находятся на линии, соединяющей ядра атомов. Эти ковалентные связи образованы локализованными $\sigma $-${\rm M}$${\rm O}$ и называются $\sigma $-связями. Важной особенностью этих связей является то, что электронная плотность в них распределена симметрично относительно оси, проходящей через ядра атомов (цилиндрическая симметрия электронной плотности). Благодаря этому атомы или группы атомов, которые соединены этой связью, могут свободно вращаться не вызывая деформации связи. Угол между направлениями валентностей атомов углерода в молекулах алканов составляет $109^\circ 28"$. Поэтому в молекулах этих веществ даже с прямой углеродной цепью атомы углерода в действительности размещаются не по прямой. Эта цепь имеет зигзагообразную форму, которая связана с сохранением межвалентных углов атомов углерода (рис. 3).

Рисунок 3. Схема строения углеродной цепи нормального алкана

В молекулах алканов с достаточно длинной углеродной цепью этот угол увеличен на $2^\circ$ вследствие отталкивания валентно не соединенных между собой атомов углерода.

Замечание 1

Каждая химическая связь характеризуется определенной энергией. Экспериментально установлено, что энергия связи $C-H$ в молекуле метана составляет 422,9 кДж/моль, этана - 401,9 кДж/моль, других алканов - около 419 кДж/моль. Энергия связи $C-C$ равен 350 кДж / моль.

Взаимосвязь строения алканов с их реакционной способностью

Высокая энергия связей $C-C$ и $C-H$ обуславливает низкую реакционную способность насыщенных углеводородов при комнатной температуре. Так, алканы не обесцвечивают бромную воду, раствор перманганата калия, не взаимодействуют с ионными реагентами (кислотами, щелочами), не реагируют с окислителями, с активными металлами. Поэтому, например, металлический натрий можно хранить в керосине, который представляет собой смесь насыщенных углеводородов. Даже концентрированная серная кислота, которая обугливает много органических веществ, при комнатной температуре не действует на алканы. Учитывая сравнительно малую реакционную способность насыщенных углеводородов, их в свое время назвали парафинами. Алканы не имеют способности присоединять водород, галогены и другие реагенты. Поэтому этот класс органических веществ назвали насыщенными углеводородами.

Химические реакции насыщенных углеводородов могут происходить за счет разрыва связей $C-C$ или $C-H$. Разрыв $C-H$-связей сопровождается отщеплением атомов водорода с образованием ненасыщеных соединений или последующим замещением отщеплений атомов водорода другими атомами или группами атомов.

В зависимости от строения алкана и условий реакции в молекулах насыщенных углеводородов связь $C-H$ может разрываться гомолитично:

Рисунок 4. Химические свойства алканов

И гетеролитично с образованием анионов и катионов:

Рисунок 5. Химические свойства алканов

При этом могут образовываться свободные радикалы, имеющие неспаренный электрон, но не имеют электрического заряда, или карбкатионы или карбанионы, которые имеют соответствующие электрические заряды. Свободные радикалы образуются в качестве промежуточных частиц в реакциях радикального механизма, а карбкатионы и карбанионы - в реакциях ионного механизма.

Вследствие того, что связи $C-C$ неполярные, а $C-H$-связи - малополярные и эти $\sigma $-связи имеют низкую поляризуемость, гетеролитический разрыв $\sigma $-связей в молекулах алканов с образованием ионов требует большой затраты энергии. Гемолитическое расщепление этих связей требует меньше енергии. Поэтому для насыщенных углеводородов более характерны реакции, протекающие по радикальному механизму. Расщепление $\sigma $-связи $C-C$ требует меньшей затраты энергии, чем расщепление связи $C-H$, поскольку энергия $C-C$-связи меньше энергии $C-H$-связи. Однако химические реакции чаще происходят с расщеплением $C-H$-связей, поскольку они более доступны для реагентов.

Влияние разветвленности и размеров алканов на их реакционную способность

Реакционная способность $C-H$-связи меняется при переходе от алканов линейной структуры к алканам-разветвленной структуры. Например, энергия диссоциации связи $C-H$ (кДж / моль) при образовании свободных радикалов меняется следующим образом:

Рисунок 6. Химические свойства алканов

Кроме того, значение энергии ионизации (ЭИ) для алканов показывает, что рост общего количества $\sigma $-связей повышает их донорные свойства и отколоть электрон становится легче для соединений с большей молекулярной массой, например:

Рисунок 7. Химические свойства алканов

Итак, в свободнорадикальных процессах реакции происходят преимущественно у третичного атома углерода, затем у вторичного и в последнюю очередь у первичного, что совпадает с рядом устойчивости свободных радикалов. Однако с повышением температуры наблюдаемая тенденция уменьшается или совсем нивелируется.

Таким образом, для алканов характерны два типа химических реакций:

  1. замещения водорода, в основном по радикальному механизму и
  2. расщепление молекулы за связями $C-C$ или $C-H$.

Применение алканов довольно разнообразное — их используют в качестве топлива, а также в механике, медицине и т.д. Роль этих химических соединений в жизни современного человека трудно переоценить.

Алканы: свойства и краткая характеристика

Алканы представляют собой нециклические углеродные соединения, в которых атомы углерода связаны простыми насыщенными связями. Эти вещества представляют собой целый ряд с определенными свойствами и характеристиками. выглядит следующим образом:

N здесь представляет собой количество атомов углерода. Например, CH3, C2H6.

Первые четыре представителя ряда алканов — газообразные вещества — это метан, этан, пропан и бутан. Следующие соединения (от C5 до C17) — это жидкости. Ряд продолжается соединениями, которые при нормальных условиях представляют собой твердые вещества.

Что же касается химических свойств, то алканы являются малоактивными — они практически не взаимодействуют со щелочами и кислотами. Кстати, именно химическими свойствами определяется применение алканов.

Тем не менее, для этих соединения характерны некоторые реакции, включая замещение атомов водорода, а также процессы расщепления молекул.

  • Самой характерной реакцией считается галогенирование, при котором атомы водорода заменяются галогенами. Большое значение имеют реакции хлорирования и бромирования этих соединений.
  • Нитрование — замещение водородного атома нитрогруппой при реакции с разбавленной (концентрация 10%) В обычных условиях алканы не взаимодействуют с кислотами. Для того чтобы провести подобную реакцию, нужна температура 140 °С.
  • Окисление — при нормальных условиях алканы не поддаются воздействию кислорода. Тем не менее, после поджигания на воздухе эти вещества вступают в окончательными продуктами которой являются вода и
  • Крекинг — эта реакция проходит лишь при наличии необходимых катализаторов. В процессе происходит расщепление стойких гомологических связей между атомами углерода. Например, при крекинге бутана в результате реакции можно получить этан и этилен.
  • Изомеризация — в результате воздействия некоторых катализаторов возможна некая перестройка углеродного скелета алкана.

Применение алканов

Основным естественным источником этих веществ являются столь ценные продукты, как природный газ и нефть. Области применения алканов на сегодняшний день очень широки и разнообразны.

Например, газообразные вещества используют как ценный источник топлива. Примером может служить метан, из которого и состоит природный газ, а также пропанобутановая смесь.

Еще один источник алканов — нефть , значение которой для современного человечества переоценить трудно. К нефтяным продуктам относят:

  • бензины — используются в качестве топлива;
  • керосин;
  • дизельное топливо, или легкий газойль;
  • тяжелый газойль, который применяют в качестве смазочного масла;
  • остатки используют для изготовления асфальта.

Нефтяные продукты также используются для получения пластмасс, синтетических волокон, каучуков и некоторых моющих средств.

Вазелин и вазелиновое масло — продукты, которые состоят из смеси алканов. Их используют в медицине и косметологии (в основном для приготовления мазей и кремов), а также в парфюмерии.

Парафин — еще один всем известный продукт, которые представляет собой смесь твердых алканов. Это твердая белая масса, температура топления которой составляет 50 - 70 градусов. В современном производстве парафин используется для изготовления свечей. Этим же веществом пропитывают спички. В медицине с помощью парафина проводят разного рода тепловые процедуры.

Страница 1
Химические свойства алканов.

Все связи в алканах малополярные, по этому для них характерны радикальные реакции. Отсутствие пи-связей делает невозможными реакции присоединения. Для алканов характерны реакции замещения, отщепления, горения.



Тип и название реакции

Пример

1. Реакции замещения

А) с галогенами хлором Cl 2 –на свету , Br 2 - при нагревании ) реакция подчиняется правилу Марковника (Правила Марковникова ) - в первую очередь галоген замещает водород у наименее гидрирован ного атом а углерода. Реакция проходит поэтапно - за один этап замещается не более одного атома водорода.
Труднее всего реагирует иод, и притом реакция не идет до конца, так как, например, при взаимодействии метана с йодом образуется йодистый водород, реагирующий с йодистым метилом с образованием метана и йода(обратимая реакция):

CH 4 + Cl 2 → CH 3 Cl + HCl (хлорметан)

CH 3 Cl + Cl 2 → CH 2 Cl 2 + HCl (дихлорметан)

CH 2 Cl 2 + Cl 2 → CHCl 3 + HCl (трихлорметан)

CHCl 3 + Cl 2 → CCl 4 + HCl (тетрахлорметан).

Б)Нитрование (Реакция Коновалова)

Алканы реагируют с 10% раствором азотной кислоты или оксидом азота N 2 O 4 в газовой фазе при температуре 140° и небольшом давлении с образованием нитропроизводных. Реакция так же подчиняется правилу Марковникова. О дин из атомов водорода заменяется на остаток NO 2 (нитрогруппа) и выделяется вода


2. Реакции отщепления

А) дегидрирование –отщепление водорода. Условия реакции катализатор –платина и температура.

CH 3 - CH 3 → CH 2 = CH 2 + Н 2


Б) крекинг процесс термического разложения углеводородов, в основе которого лежат реакции расщепления углеродной цепи крупных молекул с образованием соединений с более короткой цепью. При температуре 450–700 o С алканы распадаются за счет разрыва связей С–С(более прочные связи С–Нпри такой температуре сохраняются) и образуются алканы и алкены с меньшим числом углеродных атомов

C 6 H 14 C 2 H 6 + C 4 H 8

В) полное термическое разложение

СН 4 C + 2H 2

3. Реакции окисления

А) реакция горения При поджигании (t = 600 o С) алканы вступают в реакцию с кислородом, при этом происходит их окисление до углекислого газа и воды.

С n Н 2n+2 + O 2 ––>CO 2 + H 2 O + Q
СН 4 + 2O 2 ––>CO 2 + 2H 2 O + Q

Б) Каталитическое окисление - при относительно невысокой температуре и с применением катализаторов сопровождается разрывом только части связей С–Спримерно в середине молекулы и С–Н и используется для получения ценных продуктов: карбоновых кислот, кетонов, альдегидов, спиртов.

Например, при неполном окислении бутана (разрыв связи С 2 –С 3) получают уксусную кислоту


4. Реакции изомеризациих арактерны не для всех алканов. Обращается внимание на возможность превращения одних изомеров в другие, наличие катализаторов.

С 4 Н 10 C 4 H 10



5.. Алканы с основной цепью в 6 и более атомов углерода также вступают в реакцию дегидроциклизации, но всегда образуют 6-членный цикл (циклогексан и его производные). В условиях реакции этот цикл подвергается дальнейшему дегидрированию и превращается в энергетически более устойчивый бензольный цикл ароматического углеводорода (арена).




Способы получения алканов.

  1. Алканы в больших количествах получают из природного газа и нефти.

  2. Из простых веществ в электрическом разряде:

  3. Гидролиз карбида алюминия

  4. Нагревание моногалогеноалканов с металлическим натрием(реакция Вюрца)
    Если разные галогеноалканы, то результатом будет смесь трех продуктов:

  5. Декарбоксилирование. Сплавление ацетата натрия со щелочью. Полученный этим способом алкан будет иметь на один атом углерода меньше.

  6. Гидролиз реактива Гриньяра:

  7. Алканы симметричного строения могут быть получены в результате электролиза солей карбоновых кислот. (реакция Кольба)

страница 1

Предельные углеводороды - это такие соединения, которые представляют собой молекулы, состоящие из атомов углерода, находящихся в состоянии гибридизации sp 3 . Они связаны между собой исключительно ковалентными сигма-связями. Название «предельные» или «насыщенные» углеводороды исходит из того факта, что эти соединения не имеют возможности присоединять какие-либо атомы. Они предельны, полностью насыщены. Исключение составляют циклоалканы.

Что такое алканы?

Алканы - это углеводороды предельные, а их углеродная цепь незамкнута и состоит из атомов углерода, связанных между собой при помощи одинарных связей. Она не содержит иных (то есть двойных, как у алкенов, или же тройных, как у алкилов) связей. Алканы также называют парафинами. Это название они получили, так как общеизвестные парафины являются смесью преимущественно данных предельных углеводородов С 18 -С 35 с особой инертностью.

Общие сведения об алканах и их радикалах

Их формула: С n Р 2 n +2 , здесь n больше или равно 1. Молярная масса вычисляется по формуле: М = 14n + 2. Характерная особенность: окончания в их названиях - «-ан». Остатки их молекул, которые образуются в результате замещения водородных атомов на иные атомы, имеют название алифатических радикалов, или алкилов. Их обозначают буквой R. Общая формула одновалентных алифатических радикалов: С n Р 2 n +1 , здесь n больше или равно 1. Молярная масса алифатических радикалов вычисляется по формуле: М = 14n + 1. Характерная особенность алифатических радикалов: окончания в названиях «-ил». Молекулы алканов имеют свои особенности строения:

  • связь С-С характеризуется длиной 0,154 нм;
  • связь С-Н характеризуется длиной 0,109 нм;
  • валентный угол (угол между связями углерод-углерод) равен 109 градусов и 28 минут.

Начинают гомологический ряд алканы: метан, этан, пропан, бутан и так далее.

Физические свойства алканов

Алканы - это вещества, которые не имеют цвета и нерастворимы в воде. Температура, при которой алканы начинают плавиться, и температура, при которой они закипают, повышаются в соответствии с увеличением молекулярной массы и длины углеводородной цепи. От менее разветвленных к более разветвленным алканам температуры кипения и плавления понижаются. Газообразные алканы способны гореть бледно-голубым либо бесцветным пламенем, при этом выделяется довольно много тепла. СН 4 -С 4 Н 10 представляют собой газы, у которых отсутствует также и запах. С 5 Н 12 -С 15 Н 32 - это жидкости, которые обладают специфическим запахом. С 15 Н 32 и так далее - это твердые вещества, которые также не имеют запаха.

Химические свойства алканов

Данные соединения являются малоактивными в химическом плане, что можно объяснить прочностью трудноразрываемых сигма-связей - С-С и С-Н. Также стоит учитывать, что связи С-С неполярны, а С-Н малополярны. Это малополяризуемые виды связей, относящиеся к сигма-виду и, соответственно, разрываться по наибольшей вероятности они станут по механизму гомолитическому, в результате чего будут образовываться радикалы. Таким образом, химические свойства алканов в основном ограничиваются реакциями радикального замещения.

Реакции нитрования

Алканы взаимодействуют только с азотной кислотой с концентрацией 10% либо с оксидом четырехвалентного азота в газовой среде при температуре 140°С. Реакция нитрования алканов носит название реакции Коновалова. В результате образуются нитросоединения и вода: CH 4 + азотная кислота (разбавленная) = CH 3 - NO 2 (нитрометан) + вода.

Реакции горения

Предельные углеводороды очень часто применяются как топливо, что обосновано их способностью к горению: С n Р 2n+2 + ((3n+1)/2) O 2 = (n+1) H 2 O + n СО 2 .

Реакции окисления

В химические свойства алканов также входит их способность к окислению. В зависимости от того, какие условия сопровождают реакцию и как их изменяют, можно из одного и того же вещества получить различные конечные продукты. Мягкое окисление метана кислородом при наличии катализатора, ускоряющего реакцию, и температуры около 200 °С может дать в результате следующие вещества:

1) 2СН 4 (окисление кислородом) = 2СН 3 ОН (спирт - метанол).

2) СН 4 (окисление кислородом) = СН 2 О (альдегид - метаналь или формальдегид) + Н 2 О.

3) 2СН 4 (окисление кислородом) = 2НСООН (карбоновая кислота - метановая или муравьиная) + 2Н 2 О.

Также окисление алканов может производиться в газообразной или жидкой среде воздухом. Такие реакции приводят к образованию высших жирных спиртов и соответствующих кислот.

Отношение к нагреванию

При температурах, не превышающих +150-250°С, обязательно в присутствии катализатора, происходит структурная перестройка органических веществ, которая заключается в изменении порядка соединения атомов. Данный процесс называется изомеризацией, а вещества, полученные в результате реакции - изомерами. Таким образом, из нормального бутана получается его изомер - изобутан. При температурах 300-600°С и наличии катализатора происходит разрыв связей С-Н с образованием молекул водорода (реакции дегидрирования), молекул водорода с замыканием углеродной цепи в цикл (реакции циклизации или ароматизации алканов):

1) 2СН 4 = С 2 Н 4 (этен) + 2Н 2.

2) 2СН 4 = С 2 Н 2 (этин) + 3Н 2.

3) С 7 Н 16 (нормальный гептан) = С 6 Н 5 - СН 3 (толуол) + 4Н 2 .

Реакции галогенирования

Такие реакции заключаются во введении в молекулу органического вещества галогенов (их атомов), в результате чего образуется связь С-галоген. При взаимодействии алканов с галогенами образуются галогенпроизводные. Данная реакция обладает специфическими особенностями. Она протекает по механизму радикальному, и чтобы ее проинициировать, необходимо на смесь галогенов и алканов воздействовать ультрафиолетовым излучением или же просто нагреть ее. Свойства алканов позволяют реакции галогенирования протекать, пока не будет достигнуто полное замещение на атомы галогена. То есть хлорирование метана не закончится одной стадией и получением метилхлорида. Реакция пойдет далее, будут образовываться все возможные продукты замещения, начиная с хлорметана и заканчивая тетрахлорметаном. Воздействие хлора при данных условиях на другие алканы приведет к образованию различных продуктов, полученных в результате замещения водорода у различных атомов углерода. От температуры, при которой идет реакция, будет зависеть соотношение конечных продуктов и скорость их образования. Чем длиннее углеводородная цепь алкана, тем легче будет идти данная реакция. При галогенировании сначала будет замещаться атом углерода наименее гидрированый (третичный). Первичный вступит в реакцию после всех остальных. Реакция галогенирования будет происходить поэтапно. На первом этапе заместиться только один атом водорода. C растворами галогенов (хлорной и бромной водой) алканы не взаимодействуют.

Реакции сульфохлорирования

Химические свойства алканов также дополняются реакцией сульфохлорирования (она носит название реакции Рида). При воздействии ультрафиолетового излучения алканы способны реагировать со смесью хлора и диоксида серы. В результате образуется хлороводород, а также алкильный радикал, который присоединяет к себе диоксид серы. В результате получается сложное соединение, которое становится стабильным благодаря захвату атома хлора и разрушения очередной его молекулы: R-H + SO 2 + Cl 2 + ультрафиолетовое излучение = R-SO 2 Cl + HCl. Образовавшиеся в результате реакции сульфонилхлориды находят широкое применение в производстве поверхностно-активных веществ.



Copyright © 2024 Школа и образование.